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Abstract

The Lindley distribution is one of the statistical distributions widely used in
modeling real lifetime data, but notably due to the monotonic property of the
hazard rate function, the distribution fails to provide good fit for certain data set
of interest. In order to address this situation, researchers have keenly been
attracted to the act of developing generalized distributions with the aim of
increasing the flexibility of the classical Lindley distribution. This paper presents
a review on some methods of developing new generalization of lifetime
distributions, in particular, the Lindley family of distributions. The applicability
of some well-known generalized Lindley distributions is illustrated using a real
data set, and the Maximized log-likelihood (Log-Lik), Akaike information
criterion (AIC), Kolmogorov-Smirnov (K-S) test Statistic, Anderson Darling (A"
test Statistic, Crammer von mises (W") test Statistic and Probability-Probability
(P-P) plots were used as criteria for comparison.

Keywords: Lindley distribution, Beta-G, Exponentiated-G, Kumaraswamy-G,
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INTRODUCTION

Lifetime data analysis is a statistical method for
analyzing real lifetime problem based on survival
time. This survival time deals with the time to the
occurrence of a given event; which can be the
development of a disease, the response to
treatment or failure time of a component in an
engine. In recent decades, the study of survival
data is centered on predicting the probability of
response, survival or mean lifetime of certain
characteristic of interest. These predictions are

attainable  through the use of lifetime
distributions. Generally, lifetime distributions
92 -0 X
f(x) = —@Q+x)e 7",
(x) 0+1( )
(1)

and the cumulative distribution function given by

seek to analyze time-to-event data. Many lifetime
distributions have been introduced, studied and
applied in literature to model lifetime data and
examples of such include the exponential, beta,
gamma, Gumbel, Weibull distribution, etc. In this
paper, the authors wish to explore some
generalized Lindley distributions arising from
different methods of generalizing classical
lifetime distribution. Lindley (1958) proposed the
classical one parameter Lindley distribution with
probability density function define as

x>0,6>0
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F(x) = 1—[1+ﬂje“’x, x>0, 6>0 )
f+1

The density function defined in Equation (1) can be expressed as a two-component mixture of
exponential (¢) and gamma (2, ) distribution in the form

F0)=pf,(x) +@-p) f,(x) @)

where f,(x)and f,(x) are the density functions of the exponential () and Gamma (2, @) distribution
respectively, p is the mixing proportion (normalizing constant). Figure 1 shows the pdf of the Lindley
distribution for selected value of the parameter 6.
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Figure 1: Density plots of the Lindley distribution for different values of parameter @

Figure 1 clearly shows that the plot of the density function can be monotonically decreasing (reversed J-
shape). Given the pdf and cdf in Equations (1) and (2), the hazard rate function of the Lindley
distribution is defined as

hog = 10 0% (L+x)
1-F(X) O+1+0x

(4)

The plot of the hazard rate function of the Lindley distribution is displayed in Figure 2.
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Figure 2: Hazard rate function of the Lindley distribution for different values of parameter ¢

The plot shows that, at different choice of the parameter, the shape of the hazard rate function of the
Lindley distribution is strictly monotonically increasing. Ghitany et al. (2008) gave a comprehensive
treatment of the mathematical properties of the Lindley distribution and showed in many ways that the
distribution is a better model than the one based on the exponential distribution. The remaining Sections
of this paper are organized as follows: Section 2 presents a review of some well-known Lindley family
of distributions generated by using some methods of generalizing classical lifetime distributions. In
Section 3, the authors considered the applicability of the generalized Lindley distributions in real life
data fitting. Finally, Section 4 concludes the work.

Methods of Generating New Statistical Distribution
The Mixture Method

This method is based on mixture of two probability density functions with a mixing proportion, as given
in Equation (3). Table 1 shows some generalized distributions derived using this method.

Table 1: Distributions arising from the mixture method

Distribution Density function (pdf) Mixing pdfs Authors
New generalized 1 (oo x™ 07X g 0x Gamma (0, ) Elbatal et al. (2013)
@+D\ () ()
Lindley distribution (NGLD) & Gamma (6, )
Quasi Lindley Ha+x0) n-0x Gamma (2, @) Shanker and Mishra (2013)
a+l
distribution (QLD) & Exponential (9)
Power Lindley ;ﬁzl(“ Xa)xa—le*”“ Gen. Gamma(2, g, «) Ghitany et al., (2013)
+
distribution (PLD) & Weibull («, )
New two-parameter _6° (;, 0“7 *x“™ o ox Gamma(d, «)  Ekhosuehi et al. (2018)
6+) I'(«)
generalized Lindley distribution (NTPGLD) & Exponential (0)

Each of these generalized Lindley distribution aims at increasing the flexibility of the Lindley distribution. Although, an
application of the Quasi Lindley distribution suggests that the distribution provides better fit than the classical Lindley
distribution, the plots of its density function maintain a right-skewed unimodal shape and a strictly increasing failure rate
functions as in the case of the Lindley distribution.

The Kumaraswamy-G Method
Kumaraswamy (1980) introduced the Kumaraswamy distribution defined on a unit interval (0,1) with
the cdf defined as

G(x) = 1- (1—x“)’8, x €(01)

(5)
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and the corresponding pdf defined as

g(x) = aﬁx“‘l(l—x“)ﬁ_l , a, f>0, x>0. (6)

Suppose G(x) denotes the baseline cumulative function of a random variable, Cordeiro and de Castro

(2011) introduced a generalized form of the distribution called Kumaraswamy-G distribution with cdf
defined as

Fo = 1- (i-[e1«Y, )
and pdf given by
f0) = apx®H-[6° ) 61" e, a, B>0, x>0. (8)

Using the technique in Equations (7) and (8), Table 2 gives some generalizations of the Lindley
distribution.

Table 2: Distributions arising from the Kumaraswamy-G Method

Distributions Cummlative distribution function Authors
B
[04
Kumaraswamy Quasi 1_{1_[1_(1”%")@—“} } Elbatal and Elgarhy (2013)
A+1
Lindley distribution (KQLD)
A ) a)h
Kumaraswamy power 1- {1 _ [1 _ A+ 0+0x7) a-0x J } Oluyede et al. (2016)
0+1
Lindley Distribution (KPLD)
a P
Kumaraswamy Lindley 1_{1_(1_(1“9+9X)e‘9XJ } Salem and Hagag (2017)
0+1
distribution  (KLD)
_ A
Kumaraswamy Unit-Gompertz 1—[1—e"(x ﬁ‘ﬂ Opone et al. (2023)

Distribution (KUGD)

Motivations for using this method of generalization arose from the work of Jones (2009), who gave a comprehensive
background of the Kumaraswamy distribution, and more importantly, pointed out some advantages of the Kumaraswamy
distribution over the beta distribution. Although, the two distributions are defined on a unit interval (0,1), the Kumaraswamy
distribution has an explicit expression for the cumulative distribution function and the quantile function which does not
involve special functions.

The Exponentiated-G Method

The exponentiated class of distributions was first reported in the work of Mudholkar and Srivastava
(1993) who proposed the exponentiated Weibull family for analyzing Bathtub failure rate data. The
cumulative distribution function is defined by

F o) =[600)" ©)
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Cordeiro et al. (2013) introduced a variant of the class of distributions with cdf given by

F(x = 1-[1-6x]*}, @, B>0, x>0, (10)
and probability density function

f(x) = afl-G)** {1—[1—G(X)]“ }ﬁ

Table 3 gives some generalized Lindley distribution arising from this method.

900, @ >0, x>0. (11)

Table 3: Distributions arising from the Exponentiated-G method

Distributions Cumulative distribution function Authors
B
Generalized Lindley {1_(“‘9“9"){9"} Nadarajah et al. (2011)
0+1

distribution  (GLD)

B
Exponentiated power {1_ (@+0+0x") p0x* } Warahena-Liyanage and Pararai
0+1

(2014)
Lindley distribution (EPLD)

Elbatal et al. (2016)

B
Exponentiated Quasi {1_we‘”}

a+l

Lindley distribution (EQLD)

The exponentiated class of distributions is known to have a unique property of accommodating both monotone and non-
monotone hazard rate functions. When the exponentiated (shape) parameter is less than 1, the distribution exhibits a
decreasing hazard rate property and increasing hazard rate property when the shape parameter is greater 1. This class of
distributions also demonstrates flexibility in handling a right skewed data set.

The Odd Log-Logistic-G Method

Gleaton and Lynch (2006) introduced a new class of distributions called “the odd log-logistic family of
distribution”. The cumulative distribution function of the family is given by

G(x,&)”
- — (12)
G(x,&)* + G(x,¢&)

where G (x)is the survival function of the baseline distribution and «, & are parameter vectors.

F(x,a,&) =

Gleaton and Lynch (2010) further gave a modification of the OLL-G by introducing an extra parameter
and called it the odd log-logistic Marshall-Olkin (OLLMO) family of distributions. The cdf of the
OLLMO family of distributions is given by

~ G(x,&)”
F“ﬂj)_eagw+ﬂ€&ﬁf )

Some generalized Lindley distributions developed using this method is shown in Table 4.
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Table 4: Distributions Arising from the Odd Log-Logistic-G Method
Distributions Cumulative distribution function
Authors

{1_ (1+9+9x)e_gx}a

0+1 Ozel et al. (2017)

OLL- Lindley distribution (OLL-LD)

{1_ (1+9+9x)egx}a +{(1+€+9x) e@x}a
6+1 0+1

(1+9+Hxl) _gxi “
OLLP-Lindley distr. (OLLPLD) {l gi1 © } Alizadeh et al. (2017b)

2 ¢ y; “
{l(uawx )egxi} +|(1+.9+ex )egxi}

6+1 6+1

A 2 «

1+0+0x _

17( )e gx
o+1

2 « 2 “
{l(umex )e_gxl} +ﬂ{(uawx )e_gM}

OLL-MO power Lindley Distr. Alizadeh et al. (2017a)

f+1 0+1

Figure 3 shows that this class of distributions span the various shapes of the failure rate property, which
can be decreasing, increasing, bathtub and upside-down bathtub (unimodal) shapes.
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Figure 3: The hazard rate function of the OLPLLD and OLLMOPLD for different values of parameter

The Beta-G Method

Let F(x) be the cumulative distribution function of a random variable X and r(t) be the density
function of a random variable T. Eugene et al. (2002) defined the cdf of a generalized class of
distributions as

G() = [ r@dt, O<t<1l (14)

In particular,
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1 FOO alyy  c\b-1
G(x) = 5aD) jo 21 @-1)>7? dt (15)

and the corresponding density function is given by

_ a-lp, b-1
909 = gy T -6 (16)

Equations (15) and (16) are readily the cdf and pdf of the Beta-G class of distribution. Table 5 shows
some generalized Lindley distribution arising from the Beta-G class of distribution.

Table 5: Distributions arising from the Beta-G Method

Distributions Probability Density Function (pdf) Authors

2
New generalized m LX) [ G MirMostafaee et al. (2015)

Lindley distribution (NGLD)
2 . _ p-1
Beta exponentiated L(1+ x)e ox [G (x)]’161 1[1— [G(x)]’ﬁt] Rodrigues et al. (2015)
B(a,b) (6 +1)
Lindley distribution (BELD)

2 a
Beta power #‘M (1+ x“ )Xa_l e G -G Pararai et al. (2015b)

Lindley distribution (BPLD)

Jones (2009) made clear some similarities and differences between the Kumaraswamy distribution and
beta distribution and highlighted some advantages of the Kumaraswamy distribution over the beta
distribution. Notwithstanding, the beta distribution has the following advantages over the Kumaraswamy
distribution: simpler expression for the moments and moment generating function, a one-parameter sub-
family of symmetric distribution and a simpler moment estimation. Generally, the density function of the
beta distribution accommodates a right skewed, left skewed and a symmetric unimodal shape as reported
in Opone and Ekhosuehi (2017).

The Transformed-Transformer (T-X) Method

An extension of the Beta-G class of distribution is the one based on the Transformed-Transformer (T-X)
family of distributions proposed by Alzaatreh et al. (2013). The cumulative distribution function of the
T-X family of distributions is defined by

WF ()]
G(x) = j r(t)dt, —w<t<om (17)
and the corresponding density function as
d
90x) = WIF(X)] rWIF ()]} (19)

where W[F(x)] is a differentiable and monotonically non-decreasing function.
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Table 6: Distributions arising from the T-X Method

Distributions Probability Density Function (pdf) Authors

H(ijl
10°€%x* e \°
a?* (0 +1)

Lindley-Pareto Lazri and Zeghdoudi (2016)

distribution (LPD)

a 0?87 x e x*)2P e e
(0+1)

odd Lindley Burr XII Korkmaz et al. (2018)

distribution (OLBXII)

a6?

(@B +1)

a
Three-parameter generalized (,B +x“ )x‘)‘_1 gox Ekhosuehi and Opone (2018)

Lindley distribution (TPGLD)

The T-X method of generalization has remained the widest method used not only in generalizing the
Lindley distribution but also other classical statistical distributions. The density function of the
generalized distributions using this method has a unique property of exhibiting a left-skewed, right-
skewed, symmetric and reversed J shapes as displayed in Figure 4.
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Figure 4: Density function of the TPGLD and OLLBXI|I for different values of parameter

Data Analysis

In this Section, the authors considered an application of some generalized Lindley distributions using a
remission time data set. These distributions include; Lindley distribution due to Lindley (1958),
generalized Lindley distribution (GLD), power Lindley distribution (PLD), exponentiated power Lindley
distribution (EXPLD), Kumaraswamy power Lindley distribution (KPLD), Kumaraswamy Lindley
distribution (KLD), odd log-logistic Marshall-Olkin power Lindley distribution (OLLMOPLD), odd log-
logistic power Lindley distribution (OLLPLD) and odd Lindley Bur XII distribution (OLBXII). The fit
of the distributions for the data set are compared using the maximized log-likelihood (Log-Lik), Akaike
Information Criterion (AIC), Kolmogorov-Smirnov (K-S) test statistic, Crammer-von-Mises (W") test
statistic, Anderson Darling (A*) test statistic and Probability-Probability (p-p) plots.
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Data Set: Bladder Cancer Patient

The data set in Table 7 represents an uncensored data set corresponding to the remission times (in
months) of 128 bladder cancer patients. The data set was first reported in Lee and Wang (2003).
Alizadeh et al. (2017b) also used the data set to show the applicability of the odd log-logistic power
Lindley distribution.

Table 7: Bladder Cancer Patients Data

008 209 348 487 694 866 1311 2363 020 223 352 498 697 9.02
1329 040 226 357 506 709 922 138 2574 050 246 364 509 7.26
9.47 1424 2582 051 254 370 517 728 974 1476 2631 081 262 3.82
532 732 1006 1477 3215 264 388 532 739 1034 1483 3426 090 2.69
418 534 759 1066 1596 36.66 1.05 269 423 541 762 1075 1662 43.01
119 275 426 541 763 1712 4612 126 283 433 549 766 1125 17.14
79.05 135 287 562 787 1164 1736 140 302 434 571 793 1179 181
146 440 585 826 1198 1913 176 325 450 625 837 1202 202 331
451 654 853 1203 2028 202 336 676 1207 2173 207 336 693 865
12.63  22.69 - - - - - - - - - - - -
Table 8: Comparison Criteria for the Bladder Cancer Patient Data
Models Estimates Log-Lik AIC K-S w* A"
(p-value) (p-value) (p-value)
0.1165 0.5195 2.7871
LINDLEY =0.1960 —419.5429  841.0858
p (0.0621) (0.0354) (0.0352)
=0.8303 0.0684 0.1270 0.7887
PLD “ —419.3662  830.7325
B =0.2942 (0.5877) (0.4683) (0.4890)
=0.7334 0.0928 0.2467 1.3232
GLD “ ~ 4162975 8365950
B =0.1648 (0.2202) (0.1927) (0.2249)
B =05015
0.0907 0.2487 1.2369
KLD A =0.9755 —414.1156  834.2312
0 — 0.2837 (0.2426) (0.1901) (0.2538)
a = 0.4064
0.0316 0.0147 0.0970
OLLPLD B = 0.6054 —409.4500  824.9000
) = 25346 (0.9995) (0.9997) (1.0000)
a = 0.5665
0.0429 0.0362 0.2401
EXPLD B =0.8184 —410.4480 826.8959
) = 2765 (0.9724) (0.9522) (0.9754)
a =1.5460
0.0507 0.0575 0.3666
OLBXIlI B = 0.5046 —-411.0979  828.1957
= 0.4406 (0.8971) (0.8307) (0.8809)
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a = 0.3856
= 0.0316 0.0147 0.0967
OLLMOPLD 7 =%9%81 4094491  826.8983
2 = 2.6242 (0.9995) (0.9997) (1.0000)
6 =1.4034
a = 0.5079
= .04 . 2367
KPLD p=0821T 4104297 8288505 O 0.0356 0.2%
4 =3.1126 (0.9720) (0.9549) (0.977)
0 =1.4212

The fits of the Probability-Probability (p-p) plots of each distribution for the bladder cancer patient data
is given in the Figure 5.
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Figure 5: The Probability-Probability (p-p) plots of the distributions for the bladder cancer patient data
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Discussion of Results

A suitable model for analyzing lifetime data can
be investigated among several distributions by
examining the model with the maximized log-
likelihood value and the least Akaike Information
Criterion  (AIC), Kolmogorov-Smirnov  test
statistic (K-S), Anderson Darling (A") test statistic
and Crammer von Mises (W *) test statistic. Table
8 reveals that the odd log-logistic power Lindley
distribution (OLLPLD) outperformed the rest
distributions in the bladder cancer patient data set.
This claim was further supported by examining
the Probability-Probability (P-P) plots of the
distributions for the data sets as displayed in
Figure 6.

Conclusion

In this paper, the authors present a review on
some methods of developing new generalization
of statistical distributions, in particular, the
Lindley family of distributions. Some well-known
generalized Lindley distributions were established
and an application of some of the distributions to
a real data set reveals that the odd log-logistic
power Lindley distribution (OLLPLD) provides
better fit than all the nested distributions under
study in fitting the bladder cancer data set.
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