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ABSTRACT 
By introducing complete base number indices and restricting the number of 

sampled points to the value N which is highly composite, the paper is focused 

on the computational complexity of Discrete Fourier Transform (DFT) of a 

continuous function. We construct a Cooley-Tukey type Fast Fourier 

Transform FFT algorithm aimed at reducing the number of complex 

computational operations from N2  complex multiplications to 
Ny

2⁄  and 

from N(N − 1) complex additions to Ny, where y is an integer to which the 

selected base number is raised. To justify the effectiveness of our derived 

FFT algorithm an example is presented for N = 32 sampled points. 

 

Keywords: Fast fourier transform, Fourier series, Discrete fourier 
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INTRODUCTION 

Over the past several decades, Fourier series 

and transform have been highly researched 

by different authors due to their applications 

in various fields. For instance, Fourier 

transform is applicable to evolution of neural 

network and signal processing, resolution of 

heat equation, filtering technology, 

modulation and demodulation technology, 

sampling techniques, digital multimedia 

visualization systems, performance 

enhancement and signal processing 

implementation, examining the ratio of 

primary energy consumption and the factors 

that influence carbon emissions in a city  and 

audio signal processing. See for instance the 

very important works of Smith 2019, Jia et 

al. 2021,Sun et al. 2019, Hasan et al. 2019, 

Suganda et al. 2020, Chun et al. 2022 and 

Nathan 2013. At a glance through the efforts 

of different authors one sees that the 

computation of Fourier transform of 

discretely sampled continuous functions 

appears to be time and energy wasting due to 

the complexity of its computational 

operations. During the early years of the 

introduction of Fourier series by Jeane 

Baptiste Fourier, computations of the series 

were relatively less complicated. Later, 

Fourier transform was introduced where 

computations were done at discretely 

sampled points along the time horizon. 

Theretofore, computation of discrete Fourier 

transform (DFT) of continuous functions has 

been a problem over the years even when 

amenable to the use of the computer 

machine. This difficulty in computation 

results from the large number of complex 

multiplications followed by complex 

additions encountered. In order to proffer 

solution on how to reduce the number of 

complex computational operations, different 

mathematicians over the years have pre-

occupied themselves with the mathematical 

formulation or derivations of iterative 

algorithms generally referred to as Fast 

Fourier Transform (FFT). For instance, 

Danielson and Lanczos (1942), derived an 

algorithm for quick computation of discrete 

Fourier transform which separated the even 

part and odd part of the Fourier transform of 

a continuous function sampled into N points. 
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The authors considered the representation of the DFT as   

𝐹(𝑢) = ∑ 𝑓(𝑥)𝑒−
𝑖2𝜋𝑢𝑥
𝑁   , u

𝑁−1

𝑥=0

= 0,1, … , N − 1                                                                                   (1) 
Eq. (1) can be expressed as 

𝐹(𝑢)

= ∑ 𝑓(𝑥)𝑊𝑁
𝑢𝑥                                                                                                                            (2)

𝑁−1

𝑥=0

 

Where we set WN = e
−i2π N⁄                                                                                                    (3) 

So that the sampled points N = 2n for n ∈ ℤ+. Further the author expressed N = 2M,⟹ M =
N

2
 where M is a positive integer substituting for N in Equa.(2) yield, 

𝐹(𝑢) = ∑ 𝑓(𝑥)𝑊𝑁
𝑢𝑥

2𝑀−1

𝑥=0

 

= ∑ 𝑓(2𝑥)𝑊2𝑁
𝑢(2𝑥) +

𝑀−1

𝑥=0

∑ 𝑓(2𝑥 + 1)𝑊2𝑁
𝑢(2𝑥+1)                                                                      (4)

𝑀−1

𝑥=0

 

Here, we have separated the DFT into even and odd indexed terms with W being a complex 

constant. Cooley and Tukey (1965) formulated a fast Fourier transform Algorithm which was 

more efficient than the work of Danielson and Lancsoz. The fast Fourier transform algorithm 

utilized the binary format and produced a better efficiency. Other authors which include, 

Atonuje and Okonta (2003), Atonuje and Njoseh (2004) and Atonuje (2011) derived other fast 

Fourier transform (FFT) algorithm formats which utilized other number bases. Although, the 

above important works presented have contributed to the reduction of complex computational 

operations of DFT, the derivation of the FFT algorithm had always been based on the choice 

of the number of sampled points N expressed as indices of some base numbers. The case in 

which the choice of 𝑁 = 𝑝𝑞 where p and q appear to be factors of N is less researched upon or 

almost missing for existing literature to the best of the authors knowledge. In this article, we 

present the mathematical derivation of an FFT algorithm where N is composite. Our FFT 

algorithm is similar to that of the Cooley-Tukey Type algorithm and it is less cumbersome to 

derive.  

 

METHODOLOGY 

Decomposition of number of the sample points N into binary bits of creating summations which 

are later expanded into block matrix format.  

 

 PRELIMINARIES  

Consider a continuous function 𝑓(𝑥). By discrete Fourier transform DFT, we mean the 

computation of Fourier transform along sampled points on a continuous function 𝑓(𝑥), that is, 

the values of the FT are recorded at evenly spaced points which are ∆x units apart. The function  

𝑓(𝑥) is now expressed as 

𝑓(𝑥_0 ), 𝑓(𝑥_0 + ∆𝑥), 𝑓(𝑥_0 + 2∆𝑥), 𝑓(𝑥_0 + 3∆𝑥),⋯ , 𝑓(𝑥_0 + 𝑛∆𝑥) 

where x assumes discrete values 0,1,2,3,⋯N − 1 i.e f(x + x∆x).  

Here the calculation of Fourier transform is repeated for each value of x. we now define the 

direct Fourier transform of this discrete function f(x) by the formula  
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F(u) = ∑ f(x)e−
i2πux

N⁄

N−1

x=0

                                                                                                        (5) 

where  u = 0,1,2,3,⋯N − 1 . Moreover, the corresponding inverse discrete transform from 

which f(x) is retrieved is given by  

f(x) =
1

N
∑ F(U)e−

i2πux
N⁄

N−1

u=0

                                                                                                     (6) 

For x = 0,1,2,⋯ , N − 1. 

 To be able to see the difficulty associated with the computation of the discrete Fourier 

transform in Eq. (5), we try a sample easily understandable example. 

Example 1 

 Consider the function f(x) = x + 1 sampled at four points whose x co-ordinate value 

are 0,1,2,3. 

Solution 

 To determine the Discrete Fourier Transform DFT of f(x), we have  

(x0, x1, x2, x3, ) = (0,1,2,3), N = 4. We need to compute the DFT at these points for f(x). One 

sees that 

f(0) = 0 + 1 = 1, f(1) = 1 + 1 = 2, f(2) = 2 + 1 = 3, f(3) = 3 + 1 = 4  

Using Eq. (2.1), we have  

F(u) = ∑ f(x)e(
−i2πux

N⁄ )

N−1

x=0

 

For u = 0,1,2,3 

Hence,  

F(0) =∑f(x)e(0) =

3

x=0

∑f(x)(1)

3

x=0

 

= f(0) + f(1) + f(2) + f(3) 

= 1 + 2 + 3 + 4 = 10 

F(1) =∑f(x)e(
−i2π(1)x

N
⁄ )

3

x=0

 

= 1e0 + 2e(−
iπ
2
) + 3e(−πi) + 4e(−

3πi
2
)
 

= 1 − 2i − 3 + 4i = 4i − 2i + 1 − 3 = −2 + 2i 

F(2) =∑f(x)e(
−i4πx

N⁄ )

3

x=0
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= 1e0 + 2e(−πi) + 3e(−2πi) + 4e(−3πi) 

= 1 − 2 + 3 − 4 = −2 + 0i = −2 

F(3) =∑f(x)e(
−i6πx

N⁄ )

3

x=0

 

= 1e0 + 2e(−
3πi
2
) + 3e(−3πi) + 4e(−

9πi
2
)
 

= 1 + 2i − 3 − 4i = −2 − 2i 

From the above example, we can see that at the choice of 𝑁 = 4 by direct or machine 

computation, we have that 𝑁2 = 42 = 16 complex multiplications and 𝑁(𝑁 − 1) = 4 × 3 =
12 complex additions. Considering the FFT algorithm we see that at 𝑁 = 4 = 22 ⟹ 2𝑦, 𝑦 =

2. The 16 complex multiplications will reduce to 
𝑁𝑦

2
=

4×2

2
= 4 multiplications and 12 complex 

additions will reduce to 𝑁𝑦 = 4 × 2 = 8 additions. This is quite time saving and justifies the 

use of the FFT algorithm.  

Generally, in computing Discrete Fourier Transform, one is always faced with the question of 

the number of complex additions and multiplications involved in the calculation of DFT of f(x) 
sampled at N points. One sees from the example that the evaluation of  F(0) requires a total of 

(2N-1) operations since we have to perform N multiplications i.e (f(x)e ⋯ ) and (N-1) 

additions. Similarly the evaluation if  F(1) requires (2N-1) operations and so on until the 

evaluation of F(u) over all N values of u is complete. This requires a total number of 

N2operations i.e multiplications and N(N-1) additions. This means if N=100 the number of 

complex multiplications will be N2 = 1002 = 10,000 and number of complex additions will 

be N(N − 1) = 100(100 − 1) = 9,90. This is discouraging and has been a problem with DFT 

computation over the years. We present a generalized mathematical derivation of DFT where 

N has multiple factors.  

DERIVATION OF THE GENERALIZED COOLEY-TUKEY TYPE FAST FOURIER 

TRANSFORM ALGORITHM FOR CONTINUOUS FUNCTION SAMPLED AT 𝑵 =
𝒉𝟏 ∙ 𝒉𝟐⋯𝒉𝒓with  𝒉𝟏 ≠ 𝒉𝟐 ≠ ⋯ ≠ 𝒉𝒓 
 

The case considered there is that of the formulation of the Fast Fourier Transform (FFT) algorithm of a 

continuous function f(x) discretized at 𝑁 = ℎ1 ∙ ℎ2⋯ℎ𝑟 points whereℎ1 ≠ ℎ2 ≠ ⋯ ≠ ℎ𝑟. 

 Recall that our DFT for N points is represented as 

𝐹(𝑢) = ∑ 𝑓0(𝑥)𝑒
(−𝑖2𝜋𝑢𝑥 𝑁⁄ )

𝑁−1

𝑥=0

,

𝑢 = 0,1,2,⋯ ,𝑁 − 1                                                                    (7) 

Where f(x) are complex values by setting 𝑊 = 𝑒−𝑖2𝜋                                                                            (8) 
we obtain or express eq. (7) as 

𝐹(𝑢)

= ∑ 𝑓(𝑥)𝑊𝑢𝑥

𝑁−1

𝑥=0

                                                                                                                                 (9) 
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 We can see from eq. (9) that the function 𝑓(𝑥) is a more of a vector multiplying a matrix 

W whose entries appear to be (𝑢, 𝑥). Clearly 𝑊𝑢𝑥 and the function 𝑓(𝑥) yield a product result 

in the complex domain. More specifically, for the DFT 𝐹(0) we expect 𝑁2 complex 

multiplication and 𝑁(𝑁 − 1) additions. Our FFT algorithm will aid us to reduce the number of 

complex operations in the computation of the DFT of 𝑓(𝑥). 

We now express 𝑢 and 𝑥 in decimal bit format as  

𝑢 = 𝑢𝑚−1(ℎ1 ∙ ℎ2⋯ℎ𝑚−1) + 𝑢𝑚−2(ℎ1 ∙ ℎ2⋯ℎ𝑚−2) + 𝑢1ℎ1 + 𝑢0
𝑥 = 𝑥𝑚−1(ℎ1 ∙ ℎ2⋯ℎ𝑚) + 𝑥𝑚−2(ℎ1 ∙ ℎ2⋯ℎ𝑚) + 𝑥1ℎ𝑚 + 𝑥0

}                                           (10) 

with 

𝑢𝑖−1 = 0,1,2,⋯ , ℎ𝑖−1         1 ≤ 𝑖 ≤ 𝑚 

ℎ𝑖−1 = 0,1,2,⋯ , ℎ𝑖−1         0 ≤ 𝑖 ≤ 𝑚 − 1 

Using Eq. (10), we now write Eq. (9) as  

𝐹(𝑢𝑚−1, 𝑢𝑚−2,⋯ , 𝑢1,𝑢0)

=∑∑⋯ ∑ 𝑓0(ℎ𝑚−1 ∙ ℎ𝑚−2⋯𝑥0)𝑊
𝑢𝑥                                       (11)

𝑥𝑚−1ℎ1𝑥0

 

We note here that ∑ℎ𝑖  is the summation or addition over all 𝑘𝑖 = 0,1,2,⋯ , ℎ𝑚−1,   0 ≤ 𝑖 ≤

𝑚 − 1 

It is clear that  

𝑊𝑢𝑥

= 𝑊𝑢(𝑥𝑚−1[ℎ2ℎ3⋯ℎ𝑚−1]+⋯+𝑥0)                                                                                                       (12) 

Considering the first term of the summation 

𝑊𝑢𝑥𝑚−1(ℎ2ℎ3⋯ℎ𝑚−1) = 𝑊[𝑢𝑚−1(ℎ1ℎ3⋯ℎ𝑚−1)+⋯+𝑢0][𝑥𝑚−1(ℎ2ℎ3⋯ℎ𝑚)] 

= [𝑊ℎ1ℎ2⋯ℎ𝑚](𝑢𝑚−1[ℎ2ℎ3⋯ℎ𝑚−1]+𝑢1)𝑥𝑚−1⋯

×𝑊𝑢0𝑥𝑚−1(ℎ2⋯ℎ𝑚)                                                     (13) 

Since 𝑊ℎ1ℎ2⋯ℎ𝑚 = 𝑊𝑁 = 1, Eq. (13) can be expressed as 

𝑊𝑢𝑥𝑚−1(ℎ1ℎ2⋯ℎ𝑚)

= 𝑊𝑢𝑥𝑚−1(ℎ2ℎ3⋯ℎ𝑚)                                                                                                 (14) 

Eq. (12) can now be expressed as  

𝑊𝑢𝑥

= 𝑊𝑢𝑥𝑚−1(ℎ1ℎ2⋯ℎ𝑚)𝑾𝒖𝒙𝒎−𝟏[𝒉𝟐𝒉𝟑⋯𝒙𝒎]                                                                                         (15) 

Eq. (11) can again be expressed as  

𝐹(𝑢𝑚−1, 𝑢𝑚−2, ⋯ , 𝑢1,𝑢0)

=∑∑⋯ ∑ 𝑓(𝑢0 ∙ 𝑥𝑚−2⋯𝑥0)

𝑥𝑚−1ℎ1𝑥0

×𝑊𝑢[𝑥𝑚−2(ℎ2⋯ℎ𝑚)+⋯+𝑥0]                           (16) 

Following the same pattern which led to Eq. (15) we obtain  
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𝑊𝑢𝑥𝑚−2(ℎ3ℎ4⋯ℎ𝑚)

= 𝑊(𝑢1ℎ1+𝑢0)𝑥𝑚−2(ℎ1ℎ4⋯ℎ𝑚)                                                                                  (17) 

The identity in Eq. (17) permits the inner of Eq. (16) to be expressed as  

𝑓2(𝑢1,𝑢0, ⋯ , 𝑥𝑚−3,⋯ , 𝑥0)

= ∑ 𝑓1(𝑢0 ∙ 𝑥𝑚−2⋯𝑥0)

𝑥𝑚−2

×𝑊(𝑢1ℎ1+𝑢0)𝑥𝑚−2(ℎ1ℎ4⋯ℎ𝑚)                                        (18) 

 

Eq. (16) can now be written as  

𝐹(𝑢𝑚−1, 𝑢𝑚−2, ⋯ , 𝑢1,𝑢0)

=∑∑⋯ ∑ 𝑓2(𝑢1,𝑢0, ⋯ , 𝑥𝑚−3, ⋯ , 𝑥0)

𝑥𝑚−2ℎ1𝑥0

×𝑊𝑢[𝑥𝑚−1(ℎ4ℎ5⋯ℎ𝑚)+⋯+𝑥0]                                                                                    (19) 

By continuously reducing Eq. (19) we obtain a set of recursive equations of the form 

𝑓1(𝑢0,𝑢1, ⋯ , 𝑥𝑚−1, ⋯ , 𝑥0)

= ∑ 𝑓𝑖−1(𝑢0, 𝑢1,⋯𝑢𝑖−2, 𝑥𝑚−2⋯𝑥0)

𝑥𝑚−1

×𝑊[𝑢𝑖−1(ℎ1ℎ2⋯ℎ𝑖−1)+⋯+𝑢0)𝑥𝑚−1(ℎ𝑖−1⋯ℎ𝑚)                                                             (20) 

Eq. (20) represents an extension of the original Cooley-Tukey FFT algorithm for the general 

case whereby a continuous function 𝑓(𝑥) is sample d at N points where 𝑁 = ℎ1 ∙ ℎ2⋯ℎ𝑚and 

the ℎ𝑖 are the factors of N. the expression is valid so long as we define (𝑝𝑖+1⋯𝑝𝑚) = 𝐼 for 

𝐼 > 𝑚 − 𝑖 and 𝑥 − 1 = 0. The concluding result of the FFT algorithm is given as  

𝐹(𝑢𝑚−1, ⋯ , 𝑢0)
= 𝑓𝑚(𝑢0, ⋯ , 𝑢𝑚−1)                                                                                                 (21) 

 

APPLICATON OF DISCRETE FOURIER TRANSFORM THE CHOICE OF 

COMPOSITE NUMBER OF SAMPLED POINTS  
 

In this section, we shall sample the continuous function at N points where N is highly 

composite. To this end, we choose N = 32 and factor it as N = 32 = 8 × 4 where p = 8 

andq = 4 i.e p ≠ q. 

The procedure we shall adopt involves the derivation of as many arrays as possible with a base 

4 algorithm and then develop a binary array. 

 Let us first run a substitution as p = 8 and q = 4 and express base “8+4” into the usual 

binary equivalent. So that we obtain from the DFT 

F(u) = ∑ f0(x)e
(−i2πx N⁄ )                                                                                                            (22)

N−1

x=0

 

where 𝑓(𝑥) are complex values. Using the substitution  
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W

= e(
−i2π

N⁄ )                                                                                                                                             (23) 

We can now express Eq. (22) as 

F(u)

= ∑ f(x)Wux                                                                                                                                  (24)

N−1

x=0

 

The exponents u and x in Eq. (24) now become 

u = 8u1 + u0;  u0 = 0, 1, 2, 3,4,5,6,7  u1 = 0,1,2,3
x = 4x1 + x0;  x0 = 0, 1,2,3   x1 = 0,1,2,3,4,5,6,7

}                                                                         (25) 

We can now see from the DFT 

F(u) = ∑ f(x)Wux,    u

N−1

x=0

= 0,1,2,⋯ , N − 1                                                                                        (26) 

Where we have the set W = e(
−i2π

N⁄ ), the form, the form (26) is now expressed as 

F(u1, u0)

= ∑  ∑ f0(x1, x0)W
(8u1+u0)(4x1+x0)

7

x1=0

                                                                            (27)

3

x0=0

 

W(8u1+u0)(4x1+x0) = W(8u1+u0)4x1W(8u1+u0)x0 

= [W32u1x1]W4u0x1W(8u1+u0)x0 

= W4u0x1W(8u1+u0)x0 

Note the term in the bracket equal to unity 

W32u1x1 = [W32]u1x1 

Recall from (23) 

= [e−[
2π
32
]32]

u1x1

 

= [e−i2π]
u1x1

 

= 1 

Thus we have 

F(u1, u0)

= ∑ [∑ f0(x1, x0)W
4u0x1

7

x1=0

]W(8u1+u0)x0                                                                     (28)

3

x0=0
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From (28) we have the inner sum  

f1(u0, x0)

= ∑ f0(x1, x0)W
4u0x1                                                                                                        (29)

7

x1=0

 

The outer sum 

f2(u0, u1)

= ∑ f1(u0, x0)W
(8u1+u0)x0                                                                                               (30)

3

x1=0

 

And the unscrambling is accomplished according to the relationship 

F(u1, u0) = f2(u0, u1)                                                                                                                           (31) 

From (29) we have that  

f1(0,0) = f0(0,0)W
4(0)(0) + f0(0,1)W

4(0)(0) + f0(0,2)W
4(0)(0) + f0(0,3)W

4(0)(0)

+ f0(1,0)W
4(0)(1)  + f0(1,1)W

4(0)(1) + f0(1,2)W
4(0)(1) + f0(1,2)W

4(0)(1)

+ f0(1,3)W
4(0)(1) + f0(2,0)W

4(0)(2) + f0(2,1)W
4(0)(2) + f0(2,2)W

4(0)(2)

+ f0(2,3)W
4(0)(2) + f0(3,0)W

4(0)(3) + f0(3,1)W
4(0)(3) + f0(3,2)W

4(0)(3)

+ f0(3,3)W
4(0)(3) + f0(4,0)W

4(0)(4) + f0(4,1)W
4(0)(4) + f0(4,2)W

4(0)(4)

+ f0(4,3)W
4(0)(4) + f0(5,0)W

4(0)(5) + f0(5,1)W
4(0)(5) + f0(5,2)W

4(0)(5)

+ f0(5,3)W
4(0)(5) + f0(6,0)W

4(0)(6) + f0(6,1)W
4(0)(6) + f0(6,2)W

4(0)(6)

+ f0(6,3)W
4(0)(6) + f0(7,0)W

4(0)(7) + f0(7,1)W
4(0)(7) + f0(7,2)W

4(0)(7)

+ f0(7,3)W
4(0)(7) 

⋮ 

f1(7,3) = f0(0,0)W
4(7)(0) + f0(0,1)W

4(7)(0) + f0(0,2)W
4(7)(0) + f0(0,3)W

4(7)(0)

+ f0(1,0)W
4(7)(1)  + f0(1,1)W

4(7)(1) + f0(1,2)W
4(7)(1) + f0(1,2)W

4(7)(1)

+ f0(1,3)W
4(7)(1) + f0(2,0)W

4(7)(2) + f0(2,1)W
4(7)(2) + f0(2,2)W

4(7)(2)

+ f0(2,3)W
4(7)(2) + f0(3,0)W

4(7)(3) + f0(3,1)W
4(7)(3) + f0(3,2)W

4(7)(3)

+ f0(3,3)W
4(7)(3) + f0(4,0)W

4(7)(4) + f0(4,1)W
4(7)(4) + f0(4,2)W

4(7)(4)

+ f0(4,3)W
4(7)(4) + f0(5,0)W

4(7)(5) + f0(5,1)W
4(7)(5) + f0(5,2)W

4(7)(5)

+ f0(5,3)W
4(7)(5) + f0(6,0)W

4(7)(6) + f0(6,1)W
4(7)(6) + f0(6,2)W

4(7)(6)

+ f0(6,3)W
4(7)(6) + f0(7,0)W

4(0)(7) + f0(7,1)W
4(7)(7) + f0(7,2)W

4(7)(7)

+ f0(7,3)W
4(7)(7) 

From f1(0,0) we see that x0 = 0, so we can say that at any point x0 ≠ 0 from f1(0,0) then we 

equate it to zero and it will continue in that order from the respective values from f1(0,0) to 

f1(7,3). 
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Where 𝑊 = 𝑒−
2𝜋

𝑁 , thus 

 𝑊0 = 𝑒(−
2𝜋
𝑁
)(0)

 

𝑊0 = 𝑒0 

𝑊0 = 1 

The matrix below is gotten from the fact that 𝑊𝑢𝑥 = 𝑊𝑢𝑥𝑚𝑜𝑑(𝑁) 
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From the outer sum (3.9) we have that  

𝑓2(0,0) = 𝑓1(0,0)𝑊
(8×0+0)0 + 𝑓1(0,1)𝑊

(8×0+0)1 + 𝑓1(0,2)𝑊
(8×0+0)2 + 𝑓1(0,3)𝑊

(8×0+0)3

+ 𝑓1(1,0)𝑊
(8×0+0)0 + 𝑓1(1,1)𝑊

(8×0+0)1 + 𝑓1(1,2)𝑊
(8×0+0)2

+ 𝑓1(1,3)𝑊
(8×0+0)3 + 𝑓1(2,0)𝑊

(8×0+0)0 + 𝑓1(2,1)𝑊
(8×0+0)1

+ 𝑓1(2,2)𝑊
(8×0+0)2 + 𝑓1(2,3)𝑊

(8×0+0)3 + 𝑓1(3,0)𝑊
(8×0+0)0

+ 𝑓1(3,1)𝑊
(8×0+0)1 + 𝑓1(3,2)𝑊

(8×0+0)2 + 𝑓1(3,3)𝑊
(8×0+0)3

+ 𝑓1(4,0)𝑊
(8×0+0)0 + 𝑓1(4,1)𝑊

(8×0+0)1 + 𝑓1(4,2)𝑊
(8×0+0)2

+ 𝑓1(4,3)𝑊
(8×0+0)3 + 𝑓1(5,0)𝑊

(8×0+0)0 + 𝑓1(5,1)𝑊
(8×0+0)1

+ 𝑓1(5,2)𝑊
(8×0+0)2 + 𝑓1(5,3)𝑊

(8×0+0)3 + 𝑓1(6,0)𝑊
(8×0+0)0

+ 𝑓1(6,1)𝑊
(8×0+0)1 + 𝑓1(6,2)𝑊

(8×0+0)2 + 𝑓1(6,3)𝑊
(8×0+0)3

+ 𝑓1(7,0)𝑊
(8×0+0)0 + 𝑓1(7,1)𝑊

(8×0+0)1 + 𝑓1(7,2)𝑊
(8×0+0)2

+ 𝑓1(7,3)𝑊
(8×0+0)3 

⋮ 

𝑓2(7,3) = 𝑓1(0,0)𝑊
(8×3+7)0 + 𝑓1(0,1)𝑊

(8×3+7)1 + 𝑓1(0,2)𝑊
(8×3+7)2 + 𝑓1(0,3)𝑊

(8×3+7)3

+ 𝑓1(1,0)𝑊
(8×3+7)0 + 𝑓1(1,1)𝑊

(8×3+7)1 + 𝑓1(1,2)𝑊
(8×3+7)2

+ 𝑓1(1,3)𝑊
(8×3+7)3 + 𝑓1(2,0)𝑊

(8×3+7)0 + 𝑓1(2,1)𝑊
(8×3+7)1

+ 𝑓1(2,2)𝑊
(8×3+7)2 + 𝑓1(2,3)𝑊

(8×3+7)3 + 𝑓1(3,0)𝑊
(8×3+7)0

+ 𝑓1(3,1)𝑊
(8×3+7)1 + 𝑓1(3,2)𝑊

(8×3+7)2 + 𝑓1(3,3)𝑊
(8×3+7)3

+ 𝑓1(4,0)𝑊
(8×3+7)0 + 𝑓1(4,1)𝑊

(8×3+7)1 + 𝑓1(4,2)𝑊
(8×3+7)2

+ 𝑓1(4,3)𝑊
(8×3+7)3 + 𝑓1(5,0)𝑊

(8×3+7)0 + 𝑓1(5,1)𝑊
(8×3+7)1

+ 𝑓1(5,2)𝑊
(8×3+7)2 + 𝑓1(5,3)𝑊

(8×3+7)3 + 𝑓1(6,0)𝑊
(8×3+7)0

+ 𝑓1(6,1)𝑊
(8×3+7)1 + 𝑓1(6,2)𝑊

(8×3+7)2 + 𝑓1(6,3)𝑊
(8×3+7)3

+ 𝑓1(7,0)𝑊
(8×3+7)0 + 𝑓1(7,1)𝑊

(8×3+7)1 + 𝑓1(7,2)𝑊
(8×3+7)2

+ 𝑓1(7,3)𝑊
(8×3+7)3 

From 𝑓2(0,0) we see that 𝑢0 = 0, so we can say that at any point 𝑢0 ≠ 0 from 𝑓2(0,0) then we 

equate it to zero and it will continue in that order from the given respective values from 𝑓2(0,0) 
to 𝑓2(7,3). 
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𝑊0 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑜 𝑢𝑛𝑖𝑡𝑦 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 

Where 𝑊 = 𝑒−
2𝜋

𝑁 , thus 

 𝑊0 = 𝑒(−
2𝜋
𝑁
)(0)

 

𝑊0 = 𝑒0 

𝑊0 = 1 

The matrix below is gotten from the fact that 𝑊𝑢𝑥 = 𝑊𝑢𝑥𝑚𝑜𝑑(𝑁) 
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𝑓1(𝑢0, 𝑥0) = ∑ 𝑓0(𝑥1, 𝑥0)𝑊
4𝑢0𝑥1

7

𝑥1=0

𝑓2(𝑢0, 𝑢1) = ∑ 𝑓1(𝑢0, 𝑥0)𝑊
(8𝑢1+𝑢0)𝑥0

3

𝑥0=0

𝐹(𝑢1, 𝑢0) = 𝑓2(𝑢0, 𝑢1) }
 
 
 

 
 
 

                                                                 (36) 

 Since the second equation is formed in terms of the first, we refer to these equations as 

recursive. The discrete Fourier Transform (24) is algebraically split into factored matrices with 

zeros as a result of the FFT technique as it is presented above.  

CONCLUSION 

 By ordinary calculation of DFT we have that the computation of 𝑓1(𝑢0, 𝑥0), 𝑓2(𝑢0, 𝑢1) would 

require 𝑁2 complex multiplications and 𝑁(𝑁 − 1) complex additions. The FFT algorithm 

derived helped to introduce zeros into the square diagonal matrices as well as zeros elsewhere. 

This resulted in the reduction of the complex multiplications from 𝑁2 = 322 = 1024 to 
𝑁𝑦

2
=

32×5

2
= 80 and complex additions from 𝑁(𝑁 − 1) = 32(32 − 1) = 992 to 𝑁𝑦 = 32 × 5 =

160 additions (where y is an integer to which the selected base number is raised.  
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