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Abstract 
The structural properties of the deformed metal are of great significance in their 

technical and industrial applications .In this work; the structural properties of 

deformed transition metals were computed using the structureless 

pseudopotential formalism. The result obtained revealed that deformation 

causes an increase in the binding energy,  causes a decrease in bulk modulus, an 

increase in compressibility ratio and causes increase in cohesive energy. The 

results obtained in this study for the structural properties of deformed metals 

showed that deformation affects the structural properties of transition metals 

and the success of the structureless pseudopotential formalism in predicting the 

properties of solids. 
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INTRODUCTION 

Metals are generally malleable, they can be 

hammered or pressed permanently out of 

shape without breaking or cracking and are 

fusible and ductile. Metals in general have 

high electrical conductivity, high thermal 

conductivity, and high density. Metals are 

generally not used in their pure state but as 

mixtures of metals or metal and non-metal 

constituents commonly referred to as alloys 

(Selman, 2015).Deformation describes how 

an object's shape or size changes as a result of 

applied forces or temperature changes. For 

modest enough strain or stress, all solid 

materials display virtually identical 

behaviour, so a solid body deforms when 

tension is applied to it. When external forces 

are applied to a material, its behaviour is 

determined by the magnitude of the forces, 

the material's inherent strength, and how the 

forces are applied and integrated. The 

material may deform plastically or elastically 

as a result of the particular mix of forces. 

Knowing the intensity of the forces at all sites 

across the material determines the amount of 

deformation.(HughFord and Alexander, 

1977). Torsion, tensile, and compressive 

forces can all deform metals, depending on 

the metallic surface area that is subjected to 

distinct deformations, atoms in the interior 

and those on the surface of the metals shift 

coupled with their atomic distance during 

deformation. The contact potential difference 

on the metal surface is also altered by 

deformation (Borg, 1990). Binding energy, 

cohesive energy, Young's modulus, Poisson's 

ratio, yield strength, and ultimate strength are 

all mechanical parameters of metal that have 

become important in engineering material 

study and design( Adeshakin, 2017). At 

absolute zero temperature, the cohesive 

energy is the amount of energy necessary to 

break down  a given mass of solid metal into 

free atoms.  The strength of the forces that 

hold atoms together in the solid state is 

measured by cohesive energy. It results from 

the interaction between the core and valence 
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electrons, as well as the electronic energy and 

electron-electron interaction energy 

(Adeshakin, et al., 2012). A flexible way for 

calculating many solid state properties is 

pseudopotential formalism. The 

pseudopotential formalism uses the valence 

electrons to explain the physical 

characteristics of atoms, molecules, and 

solids. It is typical to establish an effective 

potential between the valence electrons and 

the atomic core that is weaker than the true 

potential to avoid a difficult all-electron 

challenge (Osiele, 2005). Models based on 

pseudopotential formalism have been used to 

describe many phenomena in solids over time. 

The pseudopotential formalism, for example, 

is useful for describing binding energy, 

cohesive energy, and surface features of 

simple metals (Perdew et al., 1998).  Vackar 

et al., (1998) constructed an all-electron 

pseudopotential and used it to determine the 

lattice constant and bulk modulus of silicon, 

diamond, cobalt, and titanium, and his results 

were in perfect agreement with experimental 

values. The crystal structure, bulk modulus, 

and lattice dynamics of simple metals were 

computed using the pseudopotential 

formalism and the results obtained were in 

good agreement with experimental values and 

compared very well with results obtained 

using other computational methods (Pollack, 

et al., 1998). The self variational-consistent 

treatment of metal ground state properties 

gave rise to structureless  pseudopotential 

formalism (Lang and Kohn, 1971). 

Mechanical stability is required by the 

structureless pseudopotential formalism, 

which ignores the crystal structure of metals. 

It has the following advantages: 

computational simplicity, physical 

transparency, fewer input parameters, and 

compatibility with density functional theory. 

The valence, core radius, and electron density 

parameters are the input parameters for the 

structureless pseudopotential. Different 

metallic characteristics have been computed 

using the structureless pseudopotential 

formalism (Adesakin et.al, 2012). The 

structureless pseudopotential formalism is 

extended in this work to the computation of 

binding energy, cohesive energy, 

compressibility ratio, and bulk modulus of 

deformed transition metals, to provide insight 

into how these different energies of metals 

vary as a result of the deformation.. The 

metals utilized to test the model were chosen 

based on the availability of their physical 

constants needed for computation and their 

technological and industrial applications. 

 

Theoretical Consideration 

The energy functional of a system of interacting electrons is given as 

𝐸(𝑛) = 𝑇𝑠(𝑛) + 𝐸𝑥𝑐(𝑛) +
1

2
∫ 𝑑𝑟 𝑑𝑟′ 𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
+ ∫ 𝑑𝑟 ∑ Φ(|𝑟 − 𝑅𝑖|)𝑛(𝑟) +

1

2
∑

𝑍2

|𝑅𝑖−𝑅𝑗|

′
𝑖𝑗      (1) 

 

The first three terms in equation (1) represent the kinetic energy, exchange-correlation energy 

and electrostatic energy, respectively.The last two refer to the Coulomb contact between ions and 

electrons at sites along with the pseudopotential interaction between electrons and ions. It is 

advantageous to add and subtract a neutralizing positive background of jellium, inorder to 

achieve the convergence of the individual coulomb terms appearing in equation (1). 

In the presence of the ionic pseudopotential, the energy functional can be written as  
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𝐸(𝑛) = 𝑇𝑠(𝑛) + 𝐸𝑥𝑐(𝑛) +
1

2
∫ 𝑑𝑟Φ([𝑛]; 𝑟)[𝑛(𝑟) − 𝑛+(𝑟)] + ∫ 𝑑𝑟 𝛿𝑣(𝑟)[𝑛(𝑟) − 𝑛+(𝑟)] +

∫ 𝑑𝑟 ∑ Φ𝑖 (|r − Ri|)n+ (𝑟) +
1

2
− ∫ 𝑑𝑟 𝑑𝑟

′
n+(r)n+(r′)

|r−r′| − ∫ 𝑑𝑟 ∑
𝑧

|𝑟−𝑅𝑖|𝑖 𝑛+(𝑟) +
1

2
∑

𝑧2

|𝑅𝑖−𝑅𝑗|𝑖𝑗  (2) 

whereΦ([𝑛]; 𝑟) = ∫ 𝑑𝑟′
n(r′)−n+(r′)

|r−r′|
  and 𝛿𝑣(𝑟) = ∑ Φ𝑖 (|𝑟 − 𝑅′𝑖|)+∫ 𝑑𝑟′

𝑛+(𝑟′)

|𝑟−𝑟′|
        (3) 

 

Only the first four terms in equation (2) depends on n(r) then equation (3) can be written as 

E[𝑛]=𝑇𝑠[𝑛]+𝐸𝑥𝑐 [𝑛]+
1

2
∫ 𝑑𝑟 Φ([n];r)[n(r)-𝑛+(𝑟)]+∫ 𝑑𝑟𝛿𝑣(𝑟)[𝑛(𝑟) − 𝑛+(𝑟)]                         (4) 

Equation (4) differs from jellium model by the inclusion of the last term. Thus the self –

consistent electron density may be constructed from the auxiliary wave functions which satisfy 

Schrodinger equation. 

[-
1

2
∇2+𝑣𝑒𝑓𝑓(𝑛; 𝑟)]𝜑𝑖(𝑟) = 𝐸𝑖𝜑𝑖(𝑟) (5) 

with the effective potential. 

𝑉𝑒𝑓𝑓(n;r)=Φ(𝑛; 𝑟)+𝛿𝑣(𝑟) + 𝑣𝑥𝑐(𝑛; 𝑟)                                                        (6) 

where 𝑣𝑥𝑐(𝑛; 𝑟) =
𝛿𝐸𝑥𝑐

𝛿𝑛(𝑟)
 

 

The Madelung energy of the neutralized lattice is the final term in equation (4). 

As a result, the binding energy, which is the total energy needed to assemble the valence 

electrons and ions to form the solid is 

 E=  𝑇𝑠(𝑛) + 𝐸𝑥𝑐 + 𝑊𝑅 + 𝐸𝑚                             (7) 

where 𝑇𝑠  is the kinetic energy,𝐸𝑥𝑐 is the sum of the exchange and correlation energies, 𝑊𝑅is the 

average value of the non-coulombic part of the pseudopotential and 𝐸𝑚 is the average madelung 

or electrostatic energy of points ions embedded in a uniform negative background of density, n. 

 

In the low-density limit of the density functional theory, the kinetic and exchange energies are 

given as 

𝑇 𝑠= −
1.105

𝑟𝑠
 and  𝐸𝑥 = −

𝑜.458

𝑟𝑠
(8) 

where 𝐸𝑥 is the exchange energy and 𝑟𝑠 is the electron density parameter 

The correction energy used in the work is that Carperley and Alder (I976) as parameterized by 

Perdew and Zunger (1981) and is given as 

𝐸𝑐=-
0.1423

1+1.0529𝑟𝑠+0.3339𝑟𝑠
( 9) 

 

In the structureless pseudopotential model, the binding energy of metal per electron is calculated 

using equation (7), from which we obtain 

B.E =
  1.105

𝑟𝑠𝑢
-

𝑜.458

𝑟𝑠𝑢
- 

0.1423

1+1.0529𝑟
1

2𝑠𝑢
+0.3339𝑟𝑠𝑢

  + 𝑊𝑅 + 𝐸𝑚(10) 

 

In the strectureless pseudopotential model, 𝑊𝑅is the average value of the non-coulombic part of 

the pseudopotential, WR and the average madelung or electrostatic energy of points ions 

embedded in a uniform negative background of density, Em are given as (Osiele and Edema, 

2009) 
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where 𝑟𝑜 = 𝑍
1

2𝑟𝑠 and Z and the valency 

The binding energy in the structureless pseudopotential model can be written as 

  

B.E  =−
1.105

𝑟𝑠𝑢
-

𝑜.458

𝑟𝑠𝑢
-

0.1423

1+1.0529𝑟
1

2𝑠𝑢
+0.3339𝑟𝑠𝑢

  +
3𝑟𝑐

2

2𝑟𝑠
3 -  

9𝑍

10𝑟𝑜
(13) 

where 𝑟𝑐 is the Ashcroft core radius obtained  from the bulk stability condition given as  

𝑟𝑐 =  [−
2

15
(

9𝜋

4
)

𝑟𝑠
2

2

3
+     

1

6𝜋
(

9𝜋

4
)

𝑟𝑠
2

1

3
  +   

1

5
 Z

2

3rs
2   +    

2rs
4

9r

dEc

drs
]

1

2

 (14)  

where 𝐸𝑐 is the correlation energy . 

Structure-preserving, volume-changing deformation is measured by the bulk modulus, which is: 

B =  -v(
𝜕𝑃

𝜕𝑉
) 𝑁 =  

1

12𝜋
(

1

𝑟𝑠
2

𝜕2𝐸

𝜕𝑟𝑠
2   −    

2𝜕𝐸

𝑟𝑠
2𝜕𝑟𝑠

)                                   (15) 

where pressure, P is  

P =  -[
𝜕𝐸

𝜕𝑉
] 𝑁     =    

1

4𝜋𝑟𝑠
2

𝜕𝐸

𝜕𝑟𝑠
( 16) 

The compressibility of metals at zero degrees is   

𝜏 =
1

1

12𝜋
(

1

𝑟𝑠
2

𝜕2𝐸

𝜕𝑟𝑠
2   −   

2𝜕𝐸

𝑟𝑠
2𝜕𝑟𝑠

)
 (17) 

The ratio of the non-interacting electron gas to the interacting electron's compressibility as 

(Bowen, et al.,1994) 
𝐾𝑓𝑟𝑒𝑒

𝐾
 = [1 −

4

𝜋
∝ 𝑟𝑠

1

4

𝜋𝛼

24
𝑟𝑠

5 𝑑

𝑑𝑟𝑠
(

1

𝑟𝑠
2

𝑑𝐸𝑐

𝑑𝑟𝑠
)]      (18) 

where 𝑟𝑠 is the electron density parameter,∝= (
4

9𝜋
)

1

3
 and 𝐸𝑐 is the correlation energy per electron. 

For a deformed metal, the electron density is obtained (Adeshakin et al., 2012) as  

 1 (1 2 )su s xxr r u                             (19) 

where rs is the electron density parameter of the undeforrmed metal,  𝜈 is the poisson ratio 

relating the transversal compression to elongation in the direction of applied deformation and 

𝑈𝑥𝑥 is the uniaxial strain, which accounts for the deforming force. 

 

At absolute zero temperatures, the cohesive energy is the amount of energy needed to break up a 

given mass of solid metal into free atom.  According to Eliott (1997), the net atomic energy of 

the Fermi gas in a deformed metal is calculated from that of undeformed metals and is written as  

𝑈𝑓𝑔=  
2.21

𝑟𝑠𝑢
2   -  

0.916

𝑟𝑠𝑢
-  (0.115 – 0.0313ln 𝑟𝑠𝑢)        (20) 

The inter – electron repulsion within the cell is 

𝑈𝑤𝑠  =  𝑈𝑒𝑖  +  𝑈𝑒𝑒𝑒                             (21) 

where 𝑈𝑒𝑖 is  electron –ion attractive interation given (Eliott, 1997) as 
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𝑈𝑒𝑖  = 
−3𝑍2𝑒2

8𝜋 𝑜𝑟𝑠𝑢
[1 − (

𝑟𝑐

𝑟𝑠𝑢
)

2

](22) 

 

And 𝑈𝑒𝑒 is the electron-electron attractive interaction given as     

𝑈
𝑒𝑒 =  

3𝑍2𝑒2

20𝜋 𝜀𝑜𝑟𝑠𝑢

 (23) 

Hence ; 

𝑈𝑤𝑠  = 
−3𝑍2𝑒2

8𝜋 𝑜𝑟𝑠𝑢
 +    

3𝑍2𝑒2

20𝜋 𝑜𝑟𝑠𝑒
                             (24) 

 

The cohersive energy is expressed in its entirety as  

𝑈𝑐𝑜ℎ=  Z𝑈𝑓𝑔  +  𝑈𝑤𝑠                             (25) 

where Z is valency. 

The cohesive energy of deformed metals in atomic units can be expressed as 

𝑈𝑐𝑜ℎ  =  Z[
2.21

𝑟𝑠𝑢
2   −   

0.916

𝑟𝑠𝑢
  −   (0.115 –  0.0313 ln 𝑟𝑠𝑢)] - 

3Z2

rsu
[1 − (

𝑟𝑐

𝑟𝑠𝑢
)

2

] +
1.2𝑍2

𝑟𝑠𝑢
                     (26) 

 

In computing the properties of deformed metals, we first compute the electron density parameter 

of the deformed metal using the electron density parameter of the undeformed metal. The 

electron density parameter rsu of the deformed metal is now used in place of electron density 

parameter of the undeformed metal, rsto compute the required property of the deformed metal.  

 

Results and Discussion 

Fig.1 shows the variation of the computed 

binding energy with strain.  The graph shows 

that increase in strain  causes an increase in 

the binding energy of the metals, The figure 

reveals that as strain increases, the binding 

energy of molybdenum, tungsten, tin and lead 

increases. The binding energy of titanium and 

yttrium though their values are higher than 

that of others do not vary significantly with 

strain. This observed trend shows that the 

stronger the mechanical strength of a metal is 

the less the effect of strain on its binding 

energy. This may due to the fact that the 

applied deformation causes an increase in 

inter-atomic spacing in the metals. Also, 

deformation (or strain) causes a decrease in 

the interactions between the electrons in the 

metals. (Adeshakin et al., 2012). Fig.2 shows 

the variation of bulk modulus with strain for 

some transition metals. The figure reveals that 

as strain increases, bulk modulus of these 

transition metals decreases. This may be due 

to an increase in fracture density, or a rise in 

pressure during deformation because bulk 

modulus measures the volume changing 

deformation (Kittel, 1996) The rate of 

decrease of bulk modulus with strain is higher 

in Molybdenum followed by Tungsten and 

least in Yttrium. This seems to suggest that 

the more tightly bond the atoms in a metal 

are, the greater the effect of strain on its bulk 

modulus. Tin and lead have very similar 

variation of their bulk modulus this may be 

due to their similar properties like valence and 

the similar electronic concentration which 

affected the computed bulk modulus. Fig .3 

shows the variation of compressibility ratio 

with strain for transition metals. As shows in 

the figure above, the compressibility increases 

with an increase in strain .The figure reveals 

that Yttrium has the highest increase in 

compressibility ratio with strain followed by 

lead while tungsten and molybdenum are the 

least. This shows that the least strongly bond 

the atoms in a metal is, the more likely its 

compressibility ratio will be affected by strain 

since strain causes an increase in the inter 
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particle spacing of the metals. Fig. 4 shows 

the variation of cohesive energy with strain 

for some transition metals. As show in the 

figure, the cohesive energy of Molybdenum 

and tungsten increases with strain while the 

cohesive energy of yttrium, tin and lead does 

not varies significantly with strain. This 

shows that strain affect the cohesive energy of 

metals that are tightly bonded more than those 

that are loosely bonded. This observation 

could be due to the crystal structure and the 

inter-atomic forces acting in the metal as 

these affects the bonding of the atoms in the 

metals (Kittel, 1996). 

 

Conclusion 

This work have successfully shown how 

binding energy, bulk modulus, 

compressibility ratio and cohesive energy of 

some transition metals are affected by strain. 

While increase in strain causes increases in 

binding energy compressibility ratio and 

cohesive energy. Also an increase in strain 

causes a decrease in bulk modulus. In general, 

effect of strain on these structural properties 

of these transition metals depends on how 

closely packed or packing density and 

strength of these metals. This work has shown 

that structural properties of metals are 

affected by deformation. 

 

 

Fig 1: The variation of binding energy with deformation for some transition Metals 
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Fig.2: Variation of bulk modulus with strain for some transition metals. 

 

 

Fig.3: Variation of compressibility ratio with strain for some transition Metals 

 

Fig 4:  Variation of cohesive energy with strain for some transition Metals 
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