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Abstract 
This study focused on obtaining the approximate solution of the fractional 

integro-differential equation using the orthogonal collocation method (OCM) 

with a certain orthogonal polynomial, constructed in the interval of [0, 1] 
(where 0 and 1 are in radian) with respect to the weight function 𝑤(𝑥) =
𝑐𝑜𝑠𝑥. The orthogonal collocation method (OCM) was adopted as a numerical 

solver with the generated orthogonal polynomial as basis functions. 

Numerical experiments with MAPLE 18 showed that the method exhibits 

rapid convergence. Also, stability analysis of the method showed that the 

method is stable with minimal error. Hence, the newly constructed orthogonal 

polynomial was satisfactorily employed to obtain the approximate solution of 

fractional integro-differential equations with better error estimates when 

compared with other methods in the literature. 

 

Keywords: Orthogonal polynomial, Collocation method, Integro-differential 

equation Fractional derivatives, Approximate solution. 

1. Introduction 

The fractional integro-differential equation 

is known to model many physical 

phenomena such as earthquakes, traffic 

flow, and viscoelastic material properties 

(Oyedepo, et al, 2016). Most of these 

problems cannot be solved through 

analytical methods due to some 

requirements in perturbation, linearization, 

and quasi-linearization. Consequently, 

numerical methods are preferred to seek 

approximate solutions to these problems. 

Many scholars have developed different 

numerical methods for the solution of 

fractional integro-differential equations. For 

instance, the collocation method (Bhrawy 

and Alghamdi, 2012) was used for solving 

the Langevin fractional equation of 

nonlinear order in two different intervals. 

The authors equally solved the fractional 

Fredholm integro-differential equation. In 

the same vain, Bhrawy and Alofi (2013), 

Doha et al. (2011), and Irandoust-Pakchin, 

et al (2013) applied Chebyshev polynomials 

as basis functions for the solution of 

differential equations involving multiterm 

fractional order and nonlinear Fredholm and 

Volterra integro-differential equations. 

Irandoust-Pacchin and Abdi-Mazraeh (2013) 

solved fractional integro-differential 

equations with nonlocal boundary conditions 

using the variational iteration method 

(VIM). The Adomian decomposition 

method (ADM) was used by the authors; 

Saha (2009) and Mittal and Nigam (2008) to 

solve both fractional integro-differential and 
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diffusion equations.The system of linear 

Fredholm fractional integro-differential of 

fractional order was solved by Saeedi and 

Samimi (2012) using the Homotopy 

perturbation method. 

The use of orthogonal polynomials as basis 

function for the approximate solutions of 

differential equations started in the 1930s 

(Brunner, 2014). Over the years, different 

scholars have been on the hunt for 

orthogonal polynomials as basis functions 

for the solution of many problems in science 

and engineering. For instance, Olagunju and 

Joseph (2013) solved the fractional diffusion 

equation by adopting the first kind 

Chebyshev orthogonal polynomials as basis 

functions. Zhang and Liu (2006) applied the 

Laguerre polynomials as basis functions for 

the solution of nonlinear boundary value 

problems in a spectral collocation method. 

In like manner, the Mamadu-Njoseh 

polynomials have been adopted as basis 

functions to seek the solutions to many 

problems in mathematics (Njoseh and 

Mamadu, 2016; Mamadu and Njoseh, 

2016a; Mamadu and Njoseh, 2016b). 

The motivation behind this paper is the 

construction of certain orthogonal 

polynomial with weight function, 𝑤(𝑥) =
𝑐𝑜𝑠𝑥, 𝑥 ∈ [0,1], (where end points are in 

radian) with the view of solving the 

fractional integro-differential equation of 

Fredholm kind. The orthogonal collocation 

method shall be the solver through which 

the orthogonal polynomial will be launched 

as basis functions. 

2. Preliminaries and Definitions 

 

Definitions: 

 2.1: Caputo (1967) defines the Caputo fractional derivatives for a function 𝑔(𝑡) as  

 𝐷𝑎
𝑐

𝑡
𝛼𝑔(𝑡) = {

1

Γ(𝑚−𝛼)
∫ (𝑡 − 𝑠)𝑚−𝛼−1[𝐷𝑚𝑔(𝑠)]𝑑𝑠,   𝑤ℎ𝑒𝑟𝑒 𝑚 − 1 < 𝛼 < 𝑚

𝑡

𝑎

𝑑𝑚

𝑑𝑡𝑚 𝑔(𝑡),                                                                 𝑤ℎ𝑒𝑟𝑒 𝛼 = 𝑚 
,    (2.1) 

2.2: The Riemann-Liouville fractional derivative of order 𝛼 defined in 𝑚 − 1 < 𝛼 < 𝑚 is given 

by  

 𝐷𝑎
𝑅

𝑡
𝛼𝑔(𝑡) = 𝐷𝑚[𝐷𝑡

𝛼−𝑚𝑔(𝑡)] = 𝐷𝑚 1

Γ(𝑚−𝛼)
∫ (𝑡 − 𝑠)𝑚−𝛼−1𝑔(𝑡)𝑑𝑠,

𝑡

𝑎
                             (2.2) 

where,  𝐷𝑚 =
𝑑𝑚

𝑑𝑡𝑚 is the standard 𝑚𝑡ℎ derivative  (Saha, 2009). 

2.3: Let 𝛼 > 0 and assume that 𝑔 satisfies both 𝐷𝑎
𝑅

𝑡
𝛼𝑔 and 𝐷𝑎

𝑐
𝑡
𝛼𝑔, then   

 𝐷𝑎
𝑐

𝑡
𝛼𝑔(𝑡) = 𝐷𝑎

𝑅
𝑡
𝛼𝑔(𝑡) − ∑

𝑔(𝑟)(𝑎)

Γ(𝑟+1−𝛼)
(𝑡 − 𝑎)𝑟−𝛼𝑚−1

𝑟=−0   (Mittal and Nigam, 2008)   (2.3) 

2.4: Let 𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚, then  

𝐷𝑎
𝑐

𝑡
𝛼𝑔(𝑡) = 𝐷𝑎

𝑅
𝑡
𝛼𝑔(𝑡) − ∑

𝑔(𝑟)(𝑎)

Γ(𝑟 + 1 − 𝛼)
(𝑡 − 𝑎)𝑟−𝛼

𝑚−1

𝑟=0

 

= 𝐷𝑎
𝑅

𝑡
𝛼[𝑔(𝑡) − 𝑇𝑛−1[𝑔, 𝑎](𝑡)]. (Mittal and Nigam, 2008) 
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2.5: Let 𝑔(𝑥) ∈ 𝐶−1
𝑚  such that 𝑚 ∈ ℕ ∪ {0}. Then the Caputo fractional derivative of 𝑔(𝑥) 

satisfies the following properties for 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑀, 𝑥 > 0. (Oyedepo et al., 2016) 

i. 𝐷𝛼𝐶 = 0,  C is a constant. 

ii. 𝐷𝛼𝑥𝛽 = {

Γ(𝛽+1)

Γ(𝛽+1−𝛼)
𝑥𝛽−𝛼,                𝛽𝜖ℕ,     𝛽 ≤ 𝛼𝑎

0,                                     𝛽𝜖ℕ,     𝛽 < 𝛼𝑎 
, 

with 𝛼𝑎 ≥ 𝛽 and 𝑁 = (0,1,2,3, … ). 

 

3. Orthogonal Polynomials 

A sequence of polynomials {𝑝𝑛(𝑥)}0
∞ with degree [𝑝𝑛(𝑥)] =  𝑛 for each n is called orthogonal 

with respect to the weight function 𝑤(𝑥)on interval (𝑎, 𝑏), ∀ 𝛼 < 𝑏 if 

∫ 𝑝𝑚(𝑥)𝑝𝑛(𝑥)𝑤(𝑥) = 𝜓𝑔𝛿𝑚𝑛

𝑏

𝑎

with 𝛿𝑚𝑛 = {
0, 𝑚 ≠ 𝑛
1, 𝑚 = 𝑛

}             (3.1)  

where 𝛿𝑚𝑛 is called the Kronecker delta. The polynomial (3.1) is called  

orthogonal if 𝜓𝑔 = 0 and orthonormal if 𝜓𝑔 = 1. If 𝑝𝑚(𝑥) − 𝑘𝑚𝑥𝑚 + lower order terms with 

𝐾𝑚 =  1, for each 𝑚 ∈  {0,1,2,3, … } then the polynomials are  

called harmonic.  

3.1.  Construction of New Orthogonal Polynomials 

We shall construct a new set of orthogonal polynomials with reference to the weight function, 

𝑤(𝑥) = cos x, 𝑥 ∈ [0,1], via the following properties enlisted in Njoseh and Mamadu (2016) 

with little reformulation: 

(i) 𝑀𝑛(𝑥) = ∑ ar
𝑛
𝑟=0 𝑥𝑟 

(ii) ⟨𝑀𝑚(𝑥), 𝑀𝑛(𝑥)⟩ = 0, 𝑚 ≠ 𝑛       (3.1) 

(iii) 𝑀𝑛(1) = 1.  

The first seven constructed orthogonal polynomials 𝑀𝑛(𝑥), n = 0,1,2, …, are generated below via 

MAPLE 18 as 

𝑀0 ≔ 1 

𝑀1 ≔ −0.8304877225 + 1.830487722 ∙ 𝑥 

𝑀2 ≔ 0.7879437448 + −5.003808629 ∙ 𝑥 + 5.215864884 ∙ 𝑥2 

𝑀3 ≔ 1.080849266 − 0.4399368024 ∙ 𝑥 + 1.137426582 ∙ 𝑥2 − 0.7783390452 ∙ 𝑥3 

𝑀4 ≔ 0.7630040138 − 15.74614028𝑥 + 72.85572149 ∙ 𝑥2 − 115.9921591 ∙ 𝑥3

+ 59.11957391 ∙ 𝑥4 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 63 - 74 

66 
 

𝑀5 ≔ −0.7361927206 + 22.76946236 ∙ 𝑥 − 163.7535856 ∙ 𝑥2 + 446.9090052 ∙ 𝑥3

− 512.7872919 ∙ 𝑥4 + 208.5986027 ∙ 𝑥5 

𝑀6 ≔ −0.7958496274 + 25.31376421 ∙ 𝑥 − 188.6937922 ∙ 𝑥2 + 543.1910785 ∙ 𝑥3

− 685.7621977 ∙ 𝑥4 + 353.9749064 ∙ 𝑥5 − 46.22790963 ∙ 𝑥6 

 

 

Figure 1. Graphical View of the 𝑴𝒏(𝒙), 𝒏 = 𝟎, 𝟏, 𝟐, … 

 

3.2. Orthogonal Collocation Method (OCM) 

Given the differential equation  

𝑁[𝑦(𝑥)] = 0,     (3.2) 

where 𝑁 is a differential operator. 

Let the dependent variable 𝑦(𝑥) be expressed as 

𝑦(𝑥) = ∑ 𝑎𝑖𝑦𝑖(𝑥),𝑁
𝑖=0      (3.3) 

Where 𝑎𝑖 , 𝑠 are constants, and 𝑦𝑖′𝑠 are polynomials. Thus, (3.2) becomes 

𝑁[∑ 𝑎𝑖𝑦𝑖(𝑥)𝑁
𝑖=0 ] = 0     (3.4) 

called the residual equation. Now, the collocation method entails setting the residual to zero at 

the collocation points, that is,  

𝑁[∑ 𝑎𝑖𝑦𝑖(𝑥𝑗)𝑁
𝑖=0 ] = 0,    𝑗 = 1, … , 𝑁.     (3.5) 

Equation (3.5) provides N equations in 𝑁 unknowns.  
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The above procedure is more useful when 

the 𝑦𝑖′𝑠 are orthogonal polynomials, when 

collocation is performed at the zeros of 𝑦𝑖′𝑠, 

then the process is an orthogonal collocation 

method, as first used by Lanczos (1938). 

 

 

3.3 Orthogonal Collocation Method for 

Fractional Fredholm Integro-Differential 

Equation 

We present the orthogonal collocation 

method to study the approximate solution of 

the Fredholm fractional integro-differential 

equation as given below: 

𝐷𝛼(𝑢(𝑥)) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠,   𝑥 ≥ −1, 𝑠 ≤ 1,
𝑏

𝑎
 (3.6) 

with prescribed initial conditions 

𝑢𝑛(0) = 𝐵𝑛,    (𝑛 − 1) < 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ,     (3.7) 

where 𝐷𝛼(𝑢(𝑥)) is in Caputo sense, 𝑔(𝑥) is the source term, 𝑢(𝑥) is the unknown function, 

𝑥 and 𝑡 are variables defined in the closed interval [−1,1] and 𝑘(𝑥, 𝑡), being the kernel. 

Equation (3.6) which has a unique solution under the following conditions: 

i.  𝑔(𝑥) is a Sobolev space in 𝐿2([−1,1]  × [−1,1]) and its norm is defined as  

∥  𝑔(𝑥)  ∥=  [∫ |𝑓(𝑥)|2𝑑𝑥
𝑏

𝑎
]

1/2

≤  𝐵. 

ii. kernel 𝑘(𝑥, 𝑠)  ∈  𝐿2([−1, 1]  ×  [−1, 1]) ∀ 𝑥, 𝑠 ∈  [−1, 1] and satisfies  

|𝑘(𝑥, 𝑠)|  ≤  𝐶,  

where B and C are constants. 

Using OCM in (3.6), we have 

𝐷𝛼(𝐺𝑁(𝑥)) = 𝑔(𝑥) + ∫ 𝑘(𝑥, 𝑠)𝐺𝑁(𝑠)𝑑𝑠
𝑏

𝑎
 +  𝐸(𝑥, 𝑎1, 𝑎2, . . . , 𝑎𝑁) ,    (3.8) 

where 

  𝐺𝑁(𝑥) = ∑ 𝑎𝑟𝐷𝛼(𝑀𝑟 (𝑥))𝑁
𝑟=0 ,                   (3.9) 

𝑎𝑟 are unknown constants and 𝑀𝑟 are 

linearly independent functions called New 

Constructed polynomials. The error in (3.8) 

vanishes at 𝑁 points 𝑥1 , 𝑥2 , . . . , 𝑥𝑁 by 

collocating at the zeros of 𝑀𝑟(𝑥) for the 

unknown constants 𝑎𝑟  (3.8) becomes 
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𝐸(𝑥, 𝑎1, 𝑎2, . . . , 𝑎𝑁) = 𝐷𝛼(𝐺𝑁(𝑥𝑟)) − 𝑔(𝑥𝑟) − ∫ 𝑘(𝑥𝑟, 𝑠)𝑆𝑁(𝑠)𝑑𝑠
𝑏

𝑎
 , 1 ≤ 𝑟 ≤ 𝑁.  (3.10) 

Thus, substituting the derived estimates 𝑎𝑟 into (3.9), we obtain the approximate solution to (3.6)

 

3.4 Algorithm for Implementation of 

OCM 

The implementation of the OCM is aided by 

the following steps: 

i. Choose 𝑁 arbitrarily in (3.9) and 

substitute it in (3.8). 

ii. From item (i), introduce the Caputo 

fractional property on the variable 𝑥. 

iii. Collocate orthogonally the resulting 

expansion from item (ii). The 

collocation points    depend on the 

number of unknowns. 

iv. Solve the system resulting from item 

(iii) via the Gaussian elimination 

method to obtain the values of 

𝑎𝑖, 𝑖 = 0(1)𝑛. 

v. Substitute the values of the           

𝑎𝑖, 𝑖 = 0(1)𝑛,  into (3.9) to obtain 

the approximate solution. 

4. Numerical Illustrations 

Example 4.1. (Mamadu et al., 2021) 

Consider the following linear fractional 

integro-differential equation  

𝐷
1

2⁄ 𝑢(𝑥) =
(3 8⁄ )𝑥

3
2⁄ −2𝑥

1
2⁄

√𝜋
+

𝑥

12
+ ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0
, 𝑥 ≥ 0, 𝑡 ≤ 1,          (4.1)  

with initial condition𝑢(0) = 0. 

The analytic solution is given as 𝑢(𝑥) = 𝑥2 − 𝑥. 

Let 𝑁 = 3  in (3.9), we have that 

𝑢(𝑥) = 𝑎0 + 𝑎1(−0.8304877225 + 1.830487722𝑥) + 𝑎2(0.7879437448 − 5.003808629𝑥 +

5.215864884𝑥2) + 𝑎3(1.080849266 − 0.4399368024𝑥 + 1.137426582𝑥2 −

0.7783390452𝑥3)                                                   (4.2) 

Simplifying (4.3) in power of  𝑥, we have 

𝑢(𝑥) = −0.7783390452𝑎3𝑥3 + (5.215864884𝑎2 + 1.137426582𝑎3)𝑥2 + (1.830487722𝑎1 −

5.003808629𝑎2 − 0.4399368024𝑎3)𝑥 + 𝑎0 − 0.8304877225𝑎1 + 0.7879437448𝑎2 +

1.080849266𝑎3                                                                                                                                       (4.3) 

Substituting (4.3) into (4.1) and applying the Caputo property 

𝐷𝛼𝑥𝛾 = {

0,                                       𝛾 ∈ ℕ𝑎 , 𝛾 < 𝛼𝑎

Г(𝛾 + 1)

Г(𝛾 − 𝛼 + 1)
𝑥𝛾−𝑎, 𝛾 ∈ ℕ𝑎, 𝛾 ≥ 𝛼𝑎

 

On the left-hand side, we get, 
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−
2.490684945𝑥5 2⁄ a3

√π
+

8

3

(5.215864884a2 + 1.137426582a3)𝑥3 2⁄

√π
 

+
2(1.830487722a1−5.003808629a2−0.4399368024a3)√𝑥

√π
−

8

3
𝑥3 2⁄ −2√𝑥

√π
−

1

12
𝑥 + 0.1556678090a3𝑥                    

−0.2500000000𝑥 − 0.3333333333(1.830487722a1 − 5.003808629a2 − 0.4399368034a3) 

−0.5000000000𝑥(a0 − 0.8304877225a1 + 0.7879437448a2 + 1.080849266a3) = 0               (4.4) 

Since there are four unknowns, we collocate orthogonally at the zeros of 𝑀4(𝑥), that is, 

0.06718313659, 0.3187509266, 0.6526993486, and 0.9233590625. Thus, we obtain the 

following systems of linear equations: 

Collocating at 𝑡 = 0.067183, we have: 

−0.03359156830a0 + 0.5222722669a1 − 1.328842294𝑎2 − 0.1356150621𝑎3 + 0.2606750435 = 0  

 Collocating at 𝑡 = 0.318751, we have: 

−0.1593754633𝑎0 + 1.104001196𝑎1 − 1.785089162𝑎2 − 0.2194504687𝑎3 + 0.3397465151 = 0 

 Collocating at 𝑡 = 0.652699, we have:  

−0.3263496743𝑎0 + 1.541477464𝑎1 − 0.443136783𝑎2 − 0.3233379572𝑎3 + 0.06387608292 = 0 

Collocating at 𝑡 = 0.923359, we have:  

−0.4616795312𝑎0 + 1.804776332𝑎1 + 1.509455215𝑎2 − 0.5923367408𝑎3 − 0.3275723178 = 0 

𝑎0  =  −0.169512, 𝑎1  =  −0.022210, 𝑎2  =  0.191723 , and 𝑎3 =  0.000000. 

Substituting into (4.2), we have our approximate solution as  

        𝑢(𝑥) = 7.09 10−8 − 1.000000334𝑥 + 1.000001263𝑥2      (4.5) 

 

Example 4.2. (Mamadu et al., 2021) 

Consider the following linear fractional integro-differential equation 

𝐷
5

3⁄ 𝑢(𝑥) =
3√3Γ(2

3⁄ )

𝜋
−

1

5
𝑥2 −

1

4
𝑥 + ∫ (𝑥𝑡 + 𝑥2𝑡2)𝑢(𝑡)𝑑𝑡

1

0
, 𝑥 ≥ 0, 𝑡 ≤ 1,        (4.6) 

with initial conditions 𝑢(0) = 𝑢′(0) = 0.  

The analytic solution is 𝑢(𝑥) = 𝑥2. 

Solving (4.6) in similar fashion as Example 4.1, we have our approximate solution as  

𝑢(𝑥) = −3.29 10−8 − 0.0000012306𝑥 + 1.000001263𝑥2                        (4.7) 
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5. Tables and Graphical Representation of Results 

We now present the tables of exact and approximate results with figures to enable us compare our results 

with those in literature. 

Table 1:  Comparison of Results between the exact solution, New Method approximate Solution and 

Mamadu et al. (2021) via Galerkin method for Example 4.1 

 

𝑥 Exact      Approximate of 

the New 

method 

New Method  

Error 

Mamadu et al. 

(2021) Error 

0.00 0.0000000 0.0000000 3.8159e-09 0.0000000 

0.10 -0.0900000 -0.0900000 3.8200e-09 0.0000000 

0.20 -0.1600000 -0.1600000 3.8000e-09 0.0000000 

0.30 -0.2100000 -0.2100000 4.0000e-09 0.0000000 

0.40 -0.2400000 -0.2400000 4.2000e-09 0.0000000 

0.50 -0.2500000 -0.2500000 4.4000e-09 0.0000000 

0.60 -0.2400000 -0.2400000 4.6000e-09 0.0000000 

0.70 -0.2100000 -0.2100000 5.0000e-09 0.0000000 

0.80 -0.1600000 -0.1600000 5.2000e-09 0.0000000 

0.90 -0.0900000 -0.0900000 5.4200e-09 0.0000000 

1.00   0.0000000    0.0000000 5.8159e-09     0.0000000 

 

 

Figure 2a. Matrix inverse of Example 4.1.    Figure 2b.  Approximate solution of Example 1 as   

         compared with exact solution.  
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Table 2: Comparison of Results between the Exact Solution, New method approximate solution 

and Mamadu et al. (2021) via Galerkin method for Example 4.2 

 

𝑥 Exact      Approximate of 

the proposed 

method 

Error from 

New Method 

Mamadu et al. 

(2021) Error 

 0.00    0.0000000  -0.0000001    7.8764e-08      0.0000000 

 0.10    0.0100000  0.0099999     6.5464e-08      0.0000000  

 0.20    0.0400000  0.0399999     5.2160e-08      0.0000000  

 0.30    0.0900000  0.0900000     3.8860e-08      0.0000000 

 0.40    0.1600000  0.1600000     2.5500e-08      0.0000000  

 0.50    0.2500000  0.2500000     1.2100e-08      0.0000000  

 0.60    0.3600000  0.3600000     1.4000e-09      0.0000000  

 0.70    0.4900000  0.4900000     1.4900e-08      0.0000000 

 0.80    0.6400000  0.6400000     2.8600e-08      0.0000000 

 0.90    0.8100000  0.8100000     4.2800e-08      0.0000000  

 1.00    1.0000000     1.0000001     5.6000e-08      0.0000000 

 

 

 

 

Figure 3a. Matrix inverse of Example 4.2.   Figure 3b.  Approximate solution of Example 2 as compared with  

         exact solution              

 

 

 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 63 - 74 

72 
 

6. Discussion of Results 

The use of orthogonal polynomials as basis 

functions via a suitable approximation 

scheme for the solution of many problems in 

science and technology has been on the 

increase and quite fascinating. In many 

numerical schemes, the convergence 

depends solely on the nature of the basis 

function adopted. The New Constructed 

polynomials are orthogonal polynomials 

developed in this present study with 

reference to the weight function, 𝑤(𝑥) =
cos 𝑥 , 𝑥 ∈ [0, 1]. We have successfully 

implemented the OCM for the solution of 

fractional Fredholm integro-differential 

equation using New Constructed 

polynomials as basis functions. The 

resulting numerical evidence shows that the 

method derives accurate and reliable 

approximation with an excellent convergent 

rate for both illustrations considered with 

results presented in graphs and Tables and 

are also compared with those available in 

the literature. Specifically, the constructed 

polynomials exhibit rapid convergence for 

both examples considered, attaining 

maximum errors of order 10−9 and 10−8, as 

shown in Tables 1 and 2, respectively. When 

compared with the Mamadu-Njoseh 

polynomials, it is obvious the newly 

constructed polynomials are less impressive 

in terms of convergence. The reason is not 

far-fetched. Mamadu-Njoseh polynomials 

are defined in terms of an algebraic weight 

function, while the newly constructed 

polynomials are defined in trigonometric 

weight function. Also, the graphical 

illustration in Figures 2a, 2b, 3a, and 3b, 

shows the degree of convergence between 

the exact solution and the computed 

solution. All computational frameworks are 

performed via MAPLE. 

7. Conclusion 

This research has implemented an accurate, 

valid, and reliable numerical procedure for 

the solution of the fractional Fredholm 

integro-differential equation. We have also 

considered an approximate formulation in 

the Caputo sense in terms of the New 

Constructed polynomials. The results reveal 

that the procedure converges faster even as 

𝑁 increases. We expressed the solution as a 

truncated orthogonal series so that it can 

easily be solved by any mathematical 

software without any computational stress. 

From the examples considered above, it is 

evident that the method is very accurate as it 

converges rapidly to the analytic solution. 

We have also presented our numerical 

evidence graphically showing the 

comparison of solutions between the 

analytic and approximate. 
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