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Abstract 

This study considered the spectral collocation method for solving 

the fractional Klein-Gordon Equation (FKGE) (Caputo-sense) 

with the aid of Mamadu-Njoseh polynomials. The main 

characteristic is to convert the given problem into a system of 

algebraic equations which can be solved easily with any of the 

usual methods. To show the accuracy and efficiency of the 

method, a benchmark problem is implemented with different 

values of alpha at different time t and the results obtained were 

compared with that obtained from the Variational Iteration 

method (VIM) existing in the literature. The results of numerical 

tests confirm that the spectral collocation method is superior to 

the Variational iteration method and is highly accurate. All 

computational frameworks of this research were implemented 

with the aid of MAPLE 18. 
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1. Introduction

In order to understand fractional physical 

phenomena, there is a great need to identify 

the solutions of fractional differential 

models. Obtaining an analytical solution to 

the fractional nonlinear differential equation 

is a difficult task, so the use of a numerical 

method is required to seek the solution. Many 

researchers have proposed several ways of 

solving different fractional partial differential 

equations. Over the years, Fractional Partial 

Differential Equations (FPDE) have been 

widely used in the interpretation and 

modeling of many realisms matters that 

appear in applied mathematics and physics 

including fluid mechanics, electrical circuits, 

diffusion, damping laws, relaxation 
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processes, mathematical biology (Kilbas et 

al., 2006). Unlike the Integer-order 

derivatives, the Fractional derivatives 

provide more accurate models of real-world 

problems. In recent years, several methods 

have been used to solve the fractional Klein-

Gordon equation. Hariharan (2013) solved 

the fractional Klein-Gordon equation using 

the Wavelet method.  Hosseini et al., (2017) 

modified the Kudryashov method for solving 

the conformable time-fractional Klein-

Gordon equations with quadratic and cubic 

nonlinearities. Yang et al. (2019) solved the 

nonlinear Time Fractional Klein-Gordon 

equation using the spectral collocation 

method (SCM). Amin, et al., (2020) carried 

out research to seek the numerical treatment 

of the time fractional Klein-Gordon equation 

using the Redefined Extended Cubic B-

Spline Functions. Eman, et al., (2020) 

applied the fractional reduced differential 

transform Method (FRDTM) for solving the 

nonlinear fractional Klein-Gordon equation 

(FKGE). Xiangmei, et al., (2020) applied the 

transform-based localized RBF method and 

quadrature to seek the numerical solution of 

the linear time-fractional Klein-Gordon 

equation.  

Hussaini et al., (1989) considered the theory 

and application of spectral collocation 

methods to fluid dynamics. They also 

described the fundamentals and summarize 

results pertaining to spectral approximations 

of functions. Khater et al. (2008) applied the 

spectral collocation method based on 

differentiated Chebyshev polynomials to 

solve Burgers’-type equations. According to 

the study, the method offers better accuracy 

in comparison with other previous methods. 

Zarebnia and Jalili (2013) employed the 

spectral collocation method with the aid of 

Chebyshev polynomial of first kind to seek 

the solution of a class of nonlinear partial 

differential equations. 

Bhrawy and Zaky (2016) proposed the 

shifted fractional order Jacobi orthogonal 
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functions (SFJFs) based on the definition of 

the classical Jacobi polynomials. Uwaheren 

and Taiwo (2016) employed the orthogonal 

polynomials as basis functions to solve 

fractional order integrodifferential equations. 

For instance, Njoseh and Mamadu (2016a) 

applied these polynomials for the solutions of 

Nonlinear Volterra integrodifferential 

equations via the Modified Variational 

Homotopy perturbation method. Njoseh and 

Mamadu (2016b) used their polynomial as 

trial functions for the solution of fifth-order 

boundary value problems via the power 

series approximation method. They 

constructed orthogonal polynomials by 

assuming a quadratic weight function that is 

positive in the interval [-1, 1]. Zayed et al. 

(2020) introduced the shifted Legendre-type 

matrix polynomials of arbitrary fractional 

orders and their various applications utilizing 

Rodrigues matrix formulas. In this study, 

they used the fractional order of Rodrigues 

formula in other to provide further 

investigation on such Legendre polynomials 

from a different point of view. These 

orthogonal polynomials are implemented 

through an appropriate numerical scheme as 

basis function. Recently, Njoseh et al., 

(2020) used these polynomials to obtain a 

numerical approximation of the SEIR 

Epidemic Model with the aid of the 

Variational iteration orthogonal collocation 

method. In a similar manner, Mamadu and 

Tsetimi (2020) proposed a new approach to 

singular initial value problems using 

Perturbation by decomposition. Mamadu 

(2020) also used these polynomials as basis 

functions to seek the numerical solution to 

the Black-Scholes model. 

The real question is: are the Mamadu-Njoseh 

polynomials efficient just like others in the 

literature for solving problems in differential 

equations? Due to this, a comparative study 

was carried out by Njoseh and Mamadu 

(2017) in other to investigate the efficiency in 

terms of convergence between Mamdu-
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Njoseh and Chebyshev of first kind 

polynomials. Both polynomials were applied 

as basis functions for the numerical solutions 

of tenth order boundary value problem via the 

power series approximation method. It was 

observed that both polynomials exhibited 

similar rate of convergence. Also, it was 

observed that in some nonlinear problems, 

the Mamadu-Njoseh polynomials are 

superior to the Chebyshev of first-kind 

polynomials. Hence this study approximate 

solution of the fractional Klein-Gordon 

equation (FKGE) using Mamadu-Njoseh 

polynomials (MNPs). Hence, we intend to 

solve FKGE using MNPs and compared the 

results obtained with other polynomials and 

with existing similar methods to be able to 

analyze its convergence. 

 2.       Fractional Calculus 

Fractional calculus has emerged as a model 

for a broad range of non-classical phenomena 

in the applied sciences and engineering 

(Blumen et al., 1989; Bouchaud et al., 1990; 

Baecumer et al., 2001; Barkai et al., 2000). 

Along with the expansion of numerous and 

even unexpected recent applications of the 

operators of the classical fractional calculus, 

the generalized fractional calculus is another 

powerful tool stimulating the development of 

this field (Kilbas et al., 2006; Kiryakova, 

2008). 

2.1 The Caputo Fractional derivative The Caputo fractional derivative operator is 

defined by  

𝐷𝑢
𝛼

𝑢0
𝐶 𝑓(𝑢) = {

1

Γ(𝑛−𝛼)
∫

𝑓𝑛(𝑢′)

(𝑢−𝑢′)𝛼+1−𝑛 𝑑𝑢,
𝑢

𝑢0
  (𝑛 − 1) < 𝛼 ≤ 𝑛,

(
𝑑

𝑑𝑥
)

𝑛−1

𝑓(𝑢)   if        𝛼 + 1 = 𝑛
              (1) 

Under natural condition on the function f, for 𝑛 → ∞ the Caputo derivative becomes a conventional 

n-th derivative of the function f. 

Properties of the Caputo Fractional Derivative 
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Some properties of Caputo fractional derivative that will use in this research are stated as follows 

(Mamadu et al., 2021) 

1.  𝐷𝛼𝐶 = 0, 𝐶 is a constant                    (2) 

2.  𝐷𝛼𝑥𝑛 = {
0,                                          𝑛 ∈ ℕ,   𝑛 ≥ 𝛼,

Γ(𝑛+1)

Γ(𝑛−𝛼+1)
𝑥𝛽−𝛼, 𝑖𝑓  𝑛 ∈ ℕ and   𝑛 < 𝛼,        (3)    

        where [𝛼] ≥ 𝛼 and 𝑁 = {0,1,2, … }.  

3.   𝐷𝛼(𝜆𝑓1(𝑥) + 𝜇𝑓2(𝑥)) = 𝜆𝐷𝛼𝑓1(𝑥) + 𝜇𝐷𝛼𝑓2(𝑥) 

 

 

3. Mamadu-Njoseh Spectral Collocation Method 

 

Let 𝜔1,1(𝑥) = (1 − 𝑥)1(1 + 𝑥)1 = (1 − 𝑥2) be a weight function of the Mamadu-Njoseh 

polynomials. The set of Mamadu-Njoseh polynomials {𝜑𝑛
1,1(𝑥)}

𝑛=0

∞
 forms a complete 𝐿𝜔1,1

2 (−1,1)  

orthogonal system, where 𝐿𝜔1,1
2 (−1,1) is a weighted space which is defined by 

𝐿𝜔1,1
2 (−1,1) = {𝑢: 𝑢 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 ‖𝑢‖𝜔1,1 < ∞}, 

which is equipped with the norm   

  ‖𝑢‖𝜔1,1 = (∫ |𝑢(𝑥)2|
1

−1
𝜔1,1(𝑥)𝑑𝑥)

1

2
                                               (4) 

and inner product 

〈𝑢, 𝑣〉𝜔1,1 = ∫ 𝑢(𝑥)𝑣(𝑥)
1

−1
𝜔1,1(𝑥)𝑑𝑥   ∀ 𝑢, 𝑣 ∈ 𝐿𝜔1,1

2 (−1,1)    (5) 

For a given 𝑁 ≥ 0, we denote by {𝜃𝑘}𝑘=0
𝑁  the Mamadu-Njoseh points, and by {𝜔𝑘}𝑘=0

𝑁  the 

corresponding Mamadu-Njoseh weights (i.e., {𝜔1,1}𝑘=0
𝑁 ).  Then the Mamadu-Njoseh-Gauss 

integration formula is  

∫ 𝑓(𝑥)
1

−1
𝜔1,1(𝑥)𝑑𝑥 ≈ ∑ 𝑓(𝑁

𝑘=0 𝜃𝑘)𝜔𝑘,                                                                                          (6) 

where 𝜔𝑘 = 𝜔1,1(𝑥𝑘). In similar way, we denote the Mamadu-Njoseh- Gauss points by {�̃�𝑘}
𝑘=0

𝑁
 

and corresponding Mamadu-Njoseh weights by {𝜔𝑘
1,1}

𝑘=0

𝑁
. Then the Mamadu-Njoseh Gauss 

integration formula is given as 
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∫ 𝑓(𝑥)
1

−1

𝜔1,1(𝑥)𝑑𝑥 ≈ ∑ 𝑓(

𝑁

𝑘=0

�̃�𝑘)𝜔𝑘
1,1, 

where 𝜔𝑘 = 𝜔𝑘
1,1(𝑥𝑘). 

For any given positive integer N, the collocation points is denoted by {𝑥𝑖
1,1}

𝑘=0

𝑁
., which is the set 

of (𝑁 + 1)Mamadu-Njoseh- Gauss points and it is corresponding to the weight 𝜔𝑘
1,1(𝑥).  

Let 𝑃𝑁 denote the space of all polynomials of degrees not above N for any 𝑣 ∈ 𝐶[−1,1], then the 

Mamadu-Njoseh interpolating polynomial 𝐼𝑁
1,1𝑣 ∈ 𝑃𝑁  satisfies 

𝐼𝑁
1,1𝑣(𝑥𝑖

1,1) = 𝑣(𝑥𝑖
1,1), 0 ≤ 𝑖 ≤ 𝑁 

The Mamadu-Njoseh Interpolation polynomial can be written in the form 

𝐼𝑁
1,1𝑣(𝑥) = ∑ 𝑣(𝑥𝑖

1,1)𝐹𝑖(𝑥)

𝑁

𝑖=0

,    0 ≤ 𝑖 ≤ 𝑁 

where  𝐹𝑖(𝑥) is the Mamadu-Njoseh interpolation basis function associated with {𝑥𝑖
1,1}

𝑖=0

𝑁
. 

For the possible of applying the theory of orthogonal polynomials, we use change of variables to 

transfer interval [0, 𝑡] to a fixed interval  𝐼 = : [−1,1], 

φ(x, t) = φ(θ), 𝜃 = 𝑎𝑥 +
𝑏𝑡1−𝛼

Γ(𝛼)
 

 

3.1 SCM to FKGE 

The Fractional Klein-Gordon’s equation is of the form: 

𝐷𝑡
𝛼[𝑢(𝑥, 𝑡)] + 𝑎𝐷𝑥𝑥

2 [𝑢(𝑥, 𝑡)] + 𝑏𝑢(𝑥, 𝑡) + 𝑐𝐺(𝑢(𝑥, 𝑡)) = 𝐹(𝑥, 𝑡),    0 ≤ 𝑥 ≤ 𝐿, 𝑡𝑜 ≤ 𝑡 ≤ 𝑇   (7) 

with initial conditions  

𝑢(𝑥, 𝑡𝑜) = 𝜇1(𝑥),      𝑢𝑡(𝑥, 𝑡𝑜) = 𝜇2(𝑥)      (8) 

𝑢(0, 𝑡) = 𝜇3(𝑥),          𝑢(𝐿, 𝑡) = 𝜇4(𝑥)      (9) 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 75 - 93 

81 
 

where 𝐷𝑡
𝛼 represent the Caputo fractional 

time derivative operation of 𝑢(𝑥, 𝑡), a and b 

are constants, 𝑢(𝑥, 𝑡) denotes the 

displacement of the wave at (𝑥, 𝑡), 𝛼𝜖(1,2] is 

a fractional order of the time derivative, G is 

a nonlinear function, F is the source term, a, 

b and c are real numbers. 

Let  an approximation solution be given as: 

𝑢(𝑥, 𝑡) ≔ ∑ 𝑎𝑖𝜑𝑖
𝑁
𝑖=0    (10) 

  Let 𝑁 = 3, where 𝑎𝑖 are unknowns to be 

determined and 𝜑𝑖 a Mamadu-Njoseh 

polynomial. Now substituting the value of 

𝑁 = 3 and expanding we have; 

𝑢(𝑥, 𝑡) ≔ 𝑎0𝜑0 + 𝑎1𝜑1 + 𝑎2𝜑2 + 𝑎3𝜑3       (11) 

Substituting the approximate solution into equation (7), we have 

𝐷𝑡
𝛼[∑ 𝑎𝑖𝜑𝑖

3
𝑖=0 ] + 𝑎𝐷𝑥𝑥

2 [∑ 𝑎𝑖𝜑𝑖
3
𝑖=0 ] + 𝑏 ∑ 𝑎𝑖𝜑𝑖

3
𝑖=0 + 𝑐𝐺(∑ 𝑎𝑖𝜑𝑖

3
𝑖=0 ) = 𝐹(𝑥, 𝑡)  (12) 

Expanding the approximate solution we obtain, 

𝐷𝑡
𝛼[𝑎0𝜑0 + 𝑎1𝜑1 + 𝑎2𝜑2 + 𝑎3𝜑3] + 𝑎𝐷𝑥𝑥

2 [𝑎0𝜑0 + 𝑎1𝜑1 + 𝑎2𝜑2 + 𝑎3𝜑3]  

+𝑏[𝑎0𝜑0 + 𝑎1𝜑1 + 𝑎2𝜑2 + 𝑎3𝜑3] + 𝑐𝐺(𝑎0𝜑0 + 𝑎1𝜑1 + 𝑎2𝜑2 + 𝑎3𝜑3) = 𝐹(𝑥, 𝑡) (13) 

Substituting Mamadu-Njoseh polynomial into (13) for 𝜑𝑖 = 1,2, 3, we have 

𝐷𝑡
𝛼 [𝑎0 + 𝑎1𝑡 + 𝑎2 (

5

3
𝑡2 −

2

3
) + 𝑎3 (

14

5
𝑡3 −

9

5
𝑡)]   

+𝑎𝐷𝑥𝑥
2 [𝑎0 + 𝑎1𝑥 + 𝑎2 (

5

3
𝑥2 −

2

3
) + 𝑎3 (

14

5
𝑥3 −

9

5
𝑥)]   

+𝑏 [𝑎0(1) + 𝑎1(𝑥) + 𝑎2 (
5

3
𝑥2 −

2

3
) + 𝑎3 (

14

5
𝑥3 −

9

5
𝑥)]   

+𝑐𝐺 (𝑎0 + 𝑎1𝑥 + 𝑎2 (
5

3
𝑥2 −

2

3
) + 𝑎3 (

14

5
𝑥3 −

9

5
𝑥)) = 𝐹(𝑥, 𝑡)     (14) 

Simplifying and expanding equation (14) we have  

𝐷𝑡
𝛼 [

14

5
𝑎3𝑡3 +

5

3
𝑎2𝑡2 + (𝑎1 −

9

5
𝑎3) 𝑡 + 𝑎0 −

2

3
𝑎2] 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 75 - 93 

82 
 

+𝑎𝐷𝑥𝑥
2 [

14

5
𝑎3𝑥3 +

5

3
𝑎2𝑥2 + (𝑎1 −

9

5
𝑎3) 𝑥 + 𝑎0 −

2

3
𝑎2]   

+𝑏 [
14

5
𝑎3𝑥3 +

5

3
𝑎2𝑥2 + (𝑎1 −

9

5
𝑎3) 𝑥 + 𝑎0 −

2

3
𝑎2]   

+𝑐𝐺 (
14

5
𝑎3𝑥3 +

5

3
𝑎2𝑥2 + (𝑎1 −

9

5
𝑎3) 𝑥 + 𝑎0 −

2

3
𝑎2) = 𝐹(𝑥, 𝑡)    (15) 

But  

  𝐷𝑡
𝛼(𝐾) = 0         (16) 

Where K is a constant and 

   𝐷𝑡
𝛼(𝐾𝑥𝑛) = 𝐾 [

Γ(𝑛+1)

Γ(𝑛−𝛼+1)
]      (17) 

Now implementing the two properties of Caputo-fractional derivatives in (16) and (17) on (15), 

we have 

𝐷𝑡
𝛼 (

14

5
𝑎3𝑡3) =

14

5
𝑎3 [

Γ(4)

Γ(4 − 𝛼)
] = 𝑒1 

𝐷𝑡
𝛼 (

5

3
𝑎2𝑡2) =

5

3
𝑎2 [

Γ(3)

Γ(3 − 𝛼)
] = 𝑒2 

𝐷𝑡
𝛼 ((𝑎1 −

9

5
𝑎3) 𝑡) = (𝑎1 −

9

5
𝑎3) [

Γ(3)

Γ(3 − 𝛼)
] = 𝑒3 

The result for 𝐷𝑥𝑥
2  is  

[
84

5
𝑎3𝑥 +

10

3
𝑎2] 

Now substituting the fractional derivatives obtained into equation (15) we get a residual equation 

which shall collocate. 

𝑅 ≔ [
14

5
𝑎3 [

Γ(4)

Γ(4−𝛼)
] +

5

3
𝑎2 [

Γ(3)

Γ(3−𝛼)
] + (𝑎1 −

9

5
𝑎3) [

Γ(3)

Γ(3−𝛼)
]] + [

84

5
𝑎3𝑥 +

10

3
𝑎2]  

+𝑎 [
14

5
𝑎3𝑥3 +

5

3
𝑎2𝑥2 + (𝑎1 −

9

5
𝑎3) 𝑥 + 𝑎0 −

2

3
𝑎2]   
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+𝑏𝐺 (
14

5
𝑎3𝑥3 +

5

3
𝑎2𝑥2 + (𝑎1 −

9

5
𝑎3) 𝑥 + 𝑎0 −

2

3
𝑎2) − 𝐹(𝑥, 𝑡) = 0   (18) 

Now collocating at N=4; we have  

Φ = [0.3676425560, −0.3676425560,0.8756710201, −0.8756710201] 

Solving 𝑎𝑖′𝑠 and substituting the values into 

the residual equations we get (n+1) equations 

which are solved by Gauss- elimination to 

arrive at the required approximate solution to 

the Fractional Klein-Gordon’s equations. 

4. Convergence Analysis of the 

Spectral Collocation Method 

We consider the convergence analysis of 

Spectral Collocation method (SPM) as 

applied to (7). 

Let 𝐻 = (𝑎, 𝑏) × [0, 𝜏], where H is Hilbert space. Also, let   

𝐷𝑡
𝛼𝑦𝑛+1(𝑥, 𝑡): 𝐻 → 𝑅,   𝑛 ≥ 0         (19) 

with 

∫ 𝐷𝑡
𝛼𝑦𝑛+1(𝑥, 𝑡)𝑑𝑡𝑑𝜙 < +∞, 𝑛 ≥ 0        (20) 

Theorem 4.1 

Define 𝐷𝑡
𝛼𝑦𝑛+1(𝑥, 𝑡) by 

𝐷𝑡
𝛼𝑦𝑛+1(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) − 𝑎𝐷𝑥𝑥

2 ∑ 𝑎𝑖𝜑𝑖(𝑥)𝑁
𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑥)𝑁

𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑥)𝑁
𝑖=0  (21) 

Then SCM convergences if the following are satisfied. 

i. (𝐷𝑡
𝛼(𝑦) − 𝐷𝑡

𝛼(𝑌), 𝑦 − 𝑌) ≥ 𝑝‖𝑦 − 𝑌‖2, 𝑝 > 0, 𝑦, 𝑌𝜖𝐻 

ii. For 𝜔 > 0, ∃ 𝐼(𝜔) > 0 such that ‖y‖ ≤ 𝜔, ‖𝑌‖ ≤ 𝜔, 𝑦, 𝑌 ∈ 𝐻 then 

((𝐷𝑡
𝛼(𝑦) − 𝐷𝑡

𝛼(𝑌), 𝑦 − 𝑌) ≥ 𝐼(𝜔)‖𝑦 − 𝑌‖‖𝑞‖, 𝑞 ∈ 𝐻 

Proof 

For 𝑝 > 0,   𝑦, 𝑌 ∈ 𝐻, we have 
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(𝐷𝑡
𝛼(𝑦) − 𝐷𝑡

𝛼(𝑌), 𝑦 − 𝑌) = ((𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 −

 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 ) − (𝐹(𝑥, 𝑡) − 𝑎𝐷𝑌𝑌

2 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁
𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 −

𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁
𝑖=0 ),      𝑦 − 𝑌)         (22) 

Applying the Schwartz Inequality, we get 

((𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 ) − (𝐹(𝑥, 𝑡) −

𝑎𝐷𝑌𝑌
2 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 ), 𝑦 − 𝑌)  

≤ 𝑝 ‖((𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 ) − (𝐹(𝑥, 𝑡) −

𝑎𝐷𝑌𝑌
2 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 ))‖ ‖𝑦 − 𝑌‖   (23) 

Using the mean value theorem, we obtain       

((𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 ) − (𝐹(𝑥, 𝑡) −

𝑎𝐷𝑌𝑌
2 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁
𝑖=0 − 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑌)𝑁

𝑖=0 ), 𝑦 − 𝑌) ≥ 𝜀‖𝑦 − 𝑌‖2             (24) 

where  

𝜀 =
1

2
𝑝𝜔2 

Hence  

(𝐷𝑡
𝛼(𝑦) − 𝐷𝑡

𝛼(𝑌), 𝑦 − 𝑌) ≥ 𝑝‖𝑦 − 𝑌‖2 

Similarly, for 𝜔 > 0, ∃ 𝐼(𝜔) > 0   such that‖y‖ ≤ 𝜔, ‖Y‖ ≤ 𝜔, 𝑦, 𝑌𝜖𝐻, then 

(𝐷𝑡
𝛼(𝑦) − 𝐷𝑡

𝛼(𝑌), 𝑦 − 𝑌) = ((𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁

𝑖=0 − 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 −

𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)𝑁
𝑖=0 )𝑌)   

≤ 𝜔2‖𝑦 − 𝑌‖‖𝑞‖𝐼(𝜔)‖𝑦 − 𝑌‖‖𝑞‖        (25) 

Thus, the second condition holds. This completes the proof. 
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Theorem 4.2 

For a Banach space U, suppose the non-linear mapping 𝐴: 𝑈 → 𝑈 satisfy 

‖𝐴[𝑦] − 𝐴[𝑦]̅‖ ≤  𝛽‖𝑦 − �̅�‖, 𝑦, �̅�𝜖 𝑈, 

For some constant,𝛽 < 𝑙 there exist a unique fixed point such that the sequence  

𝑦𝑛+1 = 𝛼[𝑦𝑛] 

with arbitrary choice of 𝑦0𝜖𝑦, converges to the fixed point 𝐴0, 

‖𝑦𝑖 − �̅�𝑖‖ ≤ ‖𝑦1 − �̅�0‖ ∑ 2𝑒

𝑖−2

𝑒−𝑖=1

 

Hence  

𝐴[𝑦] = (𝐹(𝑦, 𝑡) − 𝑎𝐷𝑦𝑦
2 ∑ 𝑎𝑖𝜑𝑖(𝑦)

𝑁

𝑖=0

− 𝑏 ∑ 𝑎𝑖𝜑𝑖(𝑦)

𝑁

𝑖=0

− 𝑐𝐺 ∑ 𝑎𝑖𝜑𝑖(𝑦)

𝑁

𝑖=0

) 

Proof 

For each 𝑦, �̅�𝜖 𝑈, then lim
𝑛→∞

‖𝐴[𝑦] − 𝐴[�̅�]‖ exist, where A is non-linear mapping satisfying 

 𝐴: 𝑈 → 𝑈.  

Now for each 𝑝𝜖 𝑈, where 𝑝 = (𝑦, �̅�), we have 

‖𝐴[𝑦] − 𝐴[�̅�]‖2 ≤ 𝐴[𝑦] − 𝑝, 𝑗(𝐴[𝑦] − 𝑝) 

≥ 𝛼𝑛𝛼 < 𝑈𝑛 − 𝑝, 𝑗(𝑦𝑛 − 𝑝) + (1 − 𝛼𝑛) < 𝜏𝑛𝑦𝑛 − 𝑝, 

≤ 𝛼𝑛‖𝑦𝑛−1 − 𝑝‖‖𝑦𝑛 − 𝑝‖ + (1 − 𝛼𝑛)‖𝐴[𝑦] − 𝐴[�̅�]‖2, 𝑛 > 0 

Simplifying, we have that 

‖𝑦𝑛 − 𝑝‖ ≤ ‖𝑦𝑛−1 − 𝑝‖ ⇒ 𝑦𝑛+1 = 𝛽[𝑦𝑛] 

Thus, the lim
𝑛→∞

‖𝐴[𝑦] − 𝐴[�̅�]‖ exists, and so the sequence {𝑦𝑛} is bounded. 

We next show that for some fixed constant the sequence {𝑦𝑛} converges to a definite fixed point 

‖𝑦𝑖 − �̅�𝑖‖ ≤ ‖𝑦1 − �̅�0‖ ∑ 2𝑒

𝑖−2

𝑒−𝑖=1

 

Thus, we have 

‖𝑦𝑛 − 𝜏𝑛𝑦𝑛‖ = 𝛼𝑛‖𝑦𝑛 − 𝜏𝑛𝑦𝑛‖ → 0 , 𝑛 → ∞      (26) 

We now show that {𝑦𝑛} converges to some points in U.   
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In fact, it follows from (26) that there exist a subspace {𝑦𝑟}  such that ‖𝑦𝑟 − 𝜏𝑟𝑦𝑟‖ → 0 as 𝑛𝑟 →

∞,   𝜏𝑟𝑦𝑟 → 𝑝  and 𝑦𝑟 → 𝑝 (at some point y0). 

Consequently,  

‖𝑝 − 𝑇𝑛‖ ≤ ‖𝑝 − 𝑦𝑟‖ + ‖𝑦𝑛 − 𝑝𝑦𝑛‖ + ‖𝜏𝑛𝑦𝑛 − 𝜏𝑛𝑇𝑛‖ 

= ‖𝑦𝑛 − 𝑝𝑦𝑛‖ ≤ ‖𝑦𝑛+1 − 𝑦𝑛‖ ∑ 2𝑗 → 0

𝑗−2

𝑗−𝑖=1

 

This implies that 𝑇𝑝 = 𝑝. Since 𝑦𝑛 → 𝑝 and  lim
𝑛→∞

‖𝐴[𝑦] − 𝐴[�̅�]‖ exist, we have that 𝑦𝑛 → 𝑝 

 

5. Numerical Perspectives 

Consider the non-linear time fractional KGE (Amin et al., 2020) 

𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
−

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝑢2(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),           0 < 𝑡 ≤ 1,   0 < 𝑥 ≤ 1 

with  

𝑓(𝑥, 𝑡) =
Γ (

5
2

)

Γ (
5
2 − 𝛼)

(1 − 𝑥)
5
2𝑡

3
2

−𝛼 −
15

4
(1 − 𝑥)

1
2𝑡

3
2 + (1 − 𝑥)5𝑡3 

the initial/end conditions can be extracted from the analytical/exact solution. The exact solution 

is given as: 

𝑢(𝑥, 𝑡) = (1 − 𝑥)
5
2𝑡

3
2

−𝛼 

using the Mamadu-Njoseh polynomial with 

𝛼 = 1.4  𝑎𝑛𝑑 1.6 with 𝑡 = 0.7,0.8 𝑎𝑛𝑑 0.9 

and 𝑇 = 0.001 with the adopted Spectral 

Collocation method in (15) and using the 

maple 18 Solver, the results are presented in 

the Tables below; 
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Table 4. 1: Maximum Error with 𝛼 = 1.4 and 𝑡 = 0.7 and 𝑇 = 0.001 

 

𝑼(𝒙, 𝒕) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE 

ERROR (MNSCM) 

ABSOLUTE 

ERROR (VIM) 

0.1 0.7415084 -0.0015411 7.4305 × 10−1 4.0847 × 10−2 

0.2 0.5523760 -0.0015264 5.5390 × 10−1 2.9602 × 10−2 

0.3 0.3955987 -0.0015111 3.9711 × 10−1 2.9814 × 10−2 

0.4 0.2690840 -0.0014951 2.7058 × 10−1 1.2515 × 10−1 

0.5 0.1705826 -0.0014783 1.7206 × 10−1 2.4189 × 10−1 

0.6 0.0976472 -0.0014606 9.9108 × 10−2 3.6375 × 10−1 

0.7 0.0475678 -0.0014421 4.9010 × 10−2 4.7117 × 10−1 
0.8 0.0172617 -0.0014225 1.8684 × 10−2 5.3613 × 10−1 

0.9 0.0030515 -0.0014018 4.4532 × 10−3 5.0416 × 10−1 
 

Table 4.2: Maximum Error with 𝛼 = 1.4 and 𝑡 = 0.8 and 𝑇 = 0.001 

 

𝑼(𝒙, 𝒕) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE 

ERROR (MNSCM) 

ABSOLUTE 

ERROR (VIM) 

0.1 0.7514763 -0.0015411 7.5302 × 10−1 4.0847 × 10−2 

0.2 0.5598014 -0.0015264 5.6133 × 10−1 2.9602 × 10−2 

0.3 0.4009167 -0.0015111 4.0243 × 10−1 2.9814 × 10−2 

0.4 0.2727012 -0.0014951 2.7420 × 10−1 1.2515 × 10−1 

0.5 0.1728757 -0.0014783 1.7435 × 10−1 2.4189 × 10−1 

0.6 0.0989598 -0.0014606 1.0042 × 10−1 3.6375 × 10−1 

0.7 0.0482072 -0.0014421 4.9649 × 10−2 4.7117 × 10−1 

0.8 0.0174938 -0.0014225 1.8916 × 10−2 5.3613 × 10−1 

0.9 0.0030925 -0.0014018 4.4942 × 10−3 5.0416 × 10−1 
 

Table 4.3: Maximum Error with 𝛼 = 1.4 and 𝑡 = 0.9 and 𝑇 = 0.001 

𝑼(𝒙, 𝒕) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE 

ERROR (MNSCM) 

ABSOLUTE 

ERROR (VIM) 

0.1 0.7603797 -0.0015411 7.6192 × 10−1 4.0847 × 10−2 

0.2 0.5664339 -0.0015264 5.6796 × 10−1 2.9602 × 10−2 

0.3 0.4056667 -0.0015111 4.0718 × 10−1 2.9814 × 10−2 

0.4 0.2759322 -0.0014951 2.7743 × 10−1 1.2515 × 10−1 

0.5 0.1749239 -0.0014783 1.7640 × 10−1 2.4189 × 10−1 

0.6 0.1001323 -0.0014606 1.0159 × 10−1 3.6375 × 10−1 

0.7 0.0487784 -0.0014421 5.0220 × 10−2 4.7117 × 10−1 

0.8 0.0177011 -0.0014225 1.9124 × 10−2 5.3613 × 10−1 

0.9 0.0031291 -0.0014018 4.5309 × 10−3 5.0416 × 10−1 
 

 

 

 

 

 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 75 - 93 

88 
 

Table 4.4: Maximum Error with 𝛼 = 1.6 and 𝑡 = 0.7 and 𝑇 = 0.001 

 
U(x,t) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE ERROR 

(MNSCM) 

ABSOLUTE ERROR 

(VIM) 

0.1 0.7963362 -0.0015411 7.9788 × 10−1 9.5675 × 10−2 
0.2 0.5932192 -0.0015264 5.9475 × 10−1 7.0445 × 10−2 
0.3 0.4248497 -0.0015111 4.2636 × 10−1 5.6283 × 10−2 
0.4 0.2889804 -0.0014951 2.9048 × 10−1 1.0526 × 10−1 
0.5 0.1831957 -0.0014783 1.8467 × 10−1 2.2928 × 10−1 
0.6 0.1048673 -0.0014606 1.0633 × 10−1 3.5653 × 10−1 
0.7 0.0510850 -0.0014421 5.2527 × 10−2 4.6766 × 10−1 
0.8 0.0185381 -0.0014225 1.9961 × 10−2 5.3485 × 10−1 
0.9 0.0032771 -0.0014018 4.6789 × 10−3 5.0393 × 10−1 

 

Table 4.5: Maximum Error with 𝛼 = 1.4 and 𝑡 = 0.8 and 𝑇 = 0.001 

 

𝑼(𝒙, 𝒕) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE 

ERROR (MNSCM) 

ABSOLUTE 

ERROR (VIM) 

0.1 0.7857733 -0.0015411 7.8731 × 10−1 7.5144 × 10−2 

0.2 0.5853505 -0.0015264 5.8688 × 10−1 5.515 × 10−2 

0.3 0.4192143 -0.0015111 4.2073 × 10−1 1.1516 × 10−2 

0.4 0.2851472 -0.0014951 2.8664 × 10−1 2.3400 × 10−1 

0.5 0.1807657 -0.0014783 1.8224 × 10−1 2.3400 × 10−1 

0.6 0.1034763 -0.0014606 1.0494 × 10−1 3.5923 × 10−1 

0.7 0.0504074 -0.0014421 5.1849 × 10−2 4.3533 × 10−1 

0.8 0.0182922 -0.0014225 1.9715 × 10−2 5.3533 × 10−1 

0.9 0.0032336 -0.0014018 4.6354 × 10−3 5.0402 × 10−1 
 

Table 4.6: Maximum Error with 𝛼 = 1.4 and 𝑡 = 0.9 and 𝑇 = 0.001 

𝑼(𝒙, 𝒕) EXACT 

SOLUTION 

MNSCM 

SOLUTION 

ABSOLUTE 

ERROR (MNSCM) 

ABSOLUTE 

ERROR (VIM) 

0.1 0.7765725 -0.0015411 7.7811 × 10−1 5.7040 × 10−2 

0.2 0.5784965 -0.0015264 5.8002 × 10−1 4.1664 × 10−2 

0.3 0.4143056 -0.0015111 4.1582 × 10−1 2.1175 × 10−2 

0.4 0.2818084 -0.0014951 2.8330 × 10−1 1.1928 × 10−1 

0.5 0.1786491 -0.0014783 1.8013 × 10−1 2.3816 × 10−1 

0.6 0.1022647 -0.0014606 1.0373 × 10−1 3.6162 × 10−1 

0.7 0.0498172 -0.0014421 5.1259 × 10−2 4.7014 × 10−1 

0.8 0.0180780 -0.0014225 1.9500 × 10−2 5.3575 × 10−1 

0.9 0.0031958 -0.0014018 4.5975 × 10−3 5.0409 × 10−1 
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Figure 4.1: Maximum Error with α=1.4 and t=0.7 and T=0.001       

Figure 4.2: Maximum Error with α=1.4 and t=0.8 and T=0.001 

 

 

Figure 4.3: Maximum Error with α=1.4 and t=0.9 and T=0.001         Figure 4.4: Maximum Error with α=1.6 and t=0.7 and T=0.001 

 

 

 

 

 

 

 

Figure 4.5: Maximum Error with α=1.6 and t=0.8 and T=0.001.      Figure 4.6: Maximum Error with α=1.6 and t=0.89 and T=0.001 
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6.  Discussion of Results 

We obtained some fascinating results in the 

cause of the implementation of the Spectral 

collocation method with the aid Mamadu-

Njoseh polynomials as a trial function in the 

approximation of the actual solution of the 

fractional Klein-Gordon’s equation. We have 

presented numerical evidence in tables and 

graphs with results compared with the 

Variational Iteration Method (VIM) as 

available in the literature. 

It was observed that the rate of convergence 

of solutions is controlled by the parameter 𝑥 

and 𝑡 for all cases considered as shown in 

Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6. For 

emphasis, for t = 0.7, 0.8 and 0.9  with  𝛼 =

1.4 𝑎𝑛𝑑  1.6, a maximum of error of order 

10−3 was obtained for all Mamadu-Njoseh 

Spectral Collocation Method (MNSCM) as 

against the VIM with maximum error of 

order 10−2. This suggests that as the value of 

𝑥 grows the maximum error with respect to 

MNSCM becomes smaller unlike the VIM 

where the maximum error becomes large. 

Thus, we can conclude that the rate of 

convergence of solutions of the spectral 

collocation via certain orthogonal (Mamadu-

Njoseh polynomials) is controlled by the 

parameter t for optimal output.  Also, the use 

of orthogonal polynomials gives better 

approximations than VIM.  

7. Conclusion 

It is very important to know that with use of 

numerical methods, there is hope for many 

mathematical models since many known 

analytical methods are difficult to solve these 

methods. Thus, our results have shown that 

the use of orthogonal polynomials such as 

Mamadu-Njoseh Polynomials as trial 

functions gives better approximations via 

spectral collocation method. On the basis of 

our analysis and computation, we strongly 

advocate the use of orthogonal polynomials 

as trial functions when executing the spectral 

collocation scheme for the solution of many 

nonlinear fractional partial differential 

equations.  
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