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Abstract

This work is motivated by the desire to cover the gap in the literature by

seeking the numerical

solutions to fractional

integro-differential

equations using the class of orthogonal polynomials called “the Mamadu-
Njoseh polynomials” as trial solutions, using the Tau-Collocation
method. We considered the Tau-Collocation method for solving the
fractional Integro-differential equation (FIDE) (Caputo-sense) with aid of
Mamadu-Njoseh and Chebyshev polynomials. Numerical examples
solved via MAPLE 18 showed that the Tau-Collocation method is an
excellent solver of fractional integro-differential equations. Also, the
absolute convergence of the method shows the effectiveness of Mamadu-
Njoseh and Chebyshev orthogonal polynomials as basis functions for the
fractional integro-differential equations.

Keywords: Fractional derivative, Tau Method, Collocation Method,

Orthogonal Polynomials.

1. Introduction

The role of fractional derivatives in modern
science and technology is quite fascinating. It
has found applications in Biology, Physics,

Economics, and fluid mechanics. Many
physical phenomena are governed by
fractional differential equations (FDES),

which have attracted the attention of many
researchers. Quite a number of FDEs do not
possess analytic solutions, giving room to
numerical procedures. Some of the available
numerical techniques for solving FDEs
include the Homotopy perturbation method,
Adomian decomposition method, Variational
iteration method, Collocation method, and
Homotopy analysis method, among others.
Several forms of fractional integro-
differential equations had been proposed in
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standard models, and there had been
significant interest in developing numerical
schemes for their solution (Edwards et al.,
2002).

The Tau collocation method was introduced
by Lanczos, to provide approximate
polynomial solutions for linear ordinary
differential equations with polynomial
coefficients. The method takes advantage of
the special properties of the Chebychev
polynomial (Oritz, 1969; Oritz, 1975; Oritz,
1979; Coleman, 1974 and Khajah, 1999).
Tau-collocation was initially formulated as a
tool for the approximation of special
functions of mathematical physics, which
could be expressed in terms of simple
differential equations. The interest in the Tau
method for a long period of time is regarded
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only as a tool for the construction of accurate
approximations of a very restricted class of
functions. This has been enhanced by the
availability of the software for its computer
implementation and by the possibility of
using it in the numerical solution of complex
nonlinear differential equation intervals. The
approximation of the solution of such type of
equations is achieved as a result of finding
Tau approximants of a sequence of problems
defined by linear differential equations (Oritz
et al., 1978; Oritz and Samara, 1981; Oritz
and Samara, 1984; Mamadu and Njoseh,
2016a).

The Integro-differential equation (IDE) is
one that considers both integrals and
derivatives of an unknown function. In other
words, the integro-differential equation is an
equation where both differential and integral
operators will appear in the same equation.
Integro-differential equations are usually
difficult to solve analytically; hence solution
methods in the literature involve search for
efficient approximate solutions (Babolian et
al., 2007). Recently, several numerical
methods to solve IDEs have been proposed;
these include the Wavelet-Galerkin Method
(Avudainayagam, and  Vani, 2000),

Variational Iteration Method (Njoseh and
1

r(n—-a)

(%)n_1 g@®),

where g"(t) denote the nth integer

alig(®) =

derivative of g(t).
Useful Properties of the Caputo
Fractional Derivative

0,
i. D*x™ =
r(m—a+1)

Mamadu, 2016a), Orthogonal Collocation
Methods (Mamadu and Njoseh, 2016b),
Variation Iteration Decomposition Method
(Njoseh and Mamadu, 2016b), Modified
Variational Homotopy Perturbation Method
(Njoseh and Mamadu, 2016c), Homotopy
Perturbation Method (Sweilam et al., 2008;
Saeed and Sdeq, 2010; Oyedepo, 2019), and
Tau Method (Khajah, 1999; Hosseini and
Shahmorad, 2003a; Hosseini and Shahmorad,
2003b), among others.

In this study, we intend to apply the Mamadu-
Njoseh and Chebyshev polynomials as basis
functions in resolving the approximate
solution of FIDEs using the Tau Collocation
method and compare the results obtained
from both sets of polynomials to determine
which converges faster to the exact solution.

2. Preliminaries
Definition 2.1. (Caputo Fractional
Derivative)

The first or left-sided Caputo derivative is

given as (Mamadu et. al., 2021)

f;(x — )" lgn(t)dt, (n—1) <a<n

1)
if a+1l=n
Some properties of Caputo fractional
derivative used in this work are stated as
follows (Mamadu et. al., 2021)
i. D*K = 0, K is a constant

meN,m= (a)

r(m+1) xB=%, if me€ Nand m < («), where (@) > aandN ={0,1,2,...}

ii. D“()lgl(x) +ug> (x)) = AD%g;1(x) + uD*g,(x)
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Definition 2.2. (Fractional Integro-Differential Equation)
A fractional integro-differential equation has the form (Mohammed et al., 2020)
{Dau(x) =g(x) + folk(x, s)u(s)ds, x =>0,s <1, @
u'(0)=p;, (n—1,nl€a neN,i=1,n
where u(x) is the unknown, D*u(x) is the Caputo fractional derivative of u(x) of order a, g(x)
is the non-homogeneous term, k(x, s) is the nucleus of the integral, x and s are variables defined

in [0,1].

3. Tau-Collocation Method
A fractional Fredholm integro-differential equation has the form (Mohammed et al., 2020)
Deu(x) = r(x) + [, k(x,Du(t)dt, x> a,t <b, (5)
with conditions
u'(0)=p, (n—-1,n)€a neN,i=1,-,n
where D*u(x) denotes the ath Caputo fractional derivative of u(x), r(x) is the source term,
k(x,t) isthe kernel, x and t are variables defined in [a, b], and u(x) is the required function to be
estimated.
Let us assume an approximation of the form
Llun(x)] = X7z aryy (%), (6)
where a,'s are unknown constants to be estimated, y,'s are orthogonal polynomials, and L is a
linear differential operator.
Consider an approximation to the residual, R,, as
Ry = 11T 2(x) + 12T 1 (%) + - + T T (%) -
Then by the Tau-Collocation method if
Lly()] = f (),
= Lly(x)] = f) + Ry = f(x) + 11 T2 (%) + 12Tq1(X) + -+ T T (). (7)
Thus, (7) becomes

Da(z;lzo a,y-(x),) =r(x) + f; k(x, t)(Z?zo a,y-(t))dt, x = a,t <b, (8)

Now, collocating (8) at equidistant points, that is, x;, = (ﬁ) k, k> 0, to get

n

n b
D* (Z ar)/r(xk) ;> - r(xk) - J k(xk' t) <Z aryr(tk) , ) dt = TlTn—Z(x)

r=0 =0

117



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 115 - 128

+T2Tn—1(x) + ot Tan—m+1(x) (9)
The resulting (n + 1) linear equations from (9) are thus solved by Gaussian elimination to arrive

at the required approximate solution.

4. Numerical Examples
Example 4.1 Consider the following linear fractional integro-differential equation (Njoseh and
Mamadu, 2016c¢)

3 1
1 2)x2-2x2
Dzu(x) = (S)ij i Z+ [, xtu(t)dt, x > 0,t < 1, (10)

with initial w(0) = 0. The analytic solution is given as u(x) = x(x — 1).

Case 1: Using Mamadu-Njoseh Basis Functions
Let n = 3 in (7), we have that

()_7 3+<5 +21 +5 )2+(1 +5 +3 +5>
W) =00 T 1% T Tgh) Y T \gh Tt Thpdtgn)”

1 1 11 1
t+ap+-a; —-a, ——az; — -7 11
0 T30~ ;0 — 2503~ 7Ty (11)

Substituting (11) into (10) and applying the Caputo property
OP y € Na'

D%xY = Iy +1) _
Y%ty _o+n ¢ YEe¥2a

on the left-hand side, we get,

28 azx5/2 8(5 + 55 +irl)x3/2

28 AN VACRIV R V)
25 Vi 3 NE
1 5 3 5 8 3
+2(7a1+6a2+ﬁa3+811)\/§_§x2—2\/§_1x
Nz w2
1 (7 3+(5 +21 +5 ) 2+(1 +5 +3 +5 ) )
2 \20 % T g% % Th)Y T\ TghTy%Tgth)*
1 1 11 1
+a0+5a1—za2—%a3—211:0 (12)

Now, collocate (12) at the equidistant points, that is, x; = (%) kwithn=3, k=1,23,4,t0

obtain the following systems of equations:
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1 3
2

38918880000

1
— (64868000a07'[2 + 10810800007‘[2 —45491846400asm

3

—38301120000a,mz — 108108077, — 15567552000a,m — 148262400
3 3 3
+5675670000a,mz + 405050000a,m2 + 2383781400a3m2

3
+510681607,72) = 0

1
= 38918880000 3(50270220006117'[2+945945000n'2 421998720007a,
T2

—42199872000m7, — 15567552000a,7 + 38918880000v7a; — 26687232000a,
—29240640007 +17297280ma, — 149909760vas

—124924800+v7a, + 93693600000v7a, + 106118812800v7as
1936936000007z, — 451481472007a; + 5675670000,

3 3 3
+3716212500a2n7 + 2335132800a;7m2 + 37162125007, 2 + 8648640000/7) = 0

1
38918880000

3 (3005145000a2n2 + 6756750007r2 —42199872000a,m

—38301120000a,m + 228228000000+ a, — 29343600ma, — 4671264000m
+93693600000+/ma,; + 265426761600/ma; + 228228000000~/71,

3 3
—43324934400ma; — 463174400007, + 4054050000a,72 + 3716212500a,72

3 3
+2191214025a57z + 30051450007, w2 ¥ 14414400000v7) = 0

1

1934322 2 2 2 — 454918464
= 38918880000 %( 934322390a572 + 39729690077 — 45491846400aym

+326643565248Vma; — 43568352007 + 106118812800v7a, + 265426761600va,

+265426761600+/77, — 433249344001a, — 4332493440077, — 4514814720070,
3 3 3 3
+2383781400a,m2z + 2335132800a,m2 + 2191214025a,72 + 21912140257 712

—39031151616ma; — 311351040+/m) = 0

Using the initial condition u(0) = 0, in (12), we obtain,
1 1 11 1
As = ay +§a1 BT R e 0
Solving the above equations via MAPLE 18, we obtain values

ap, = 3.600000,a, = —6.000000,a, = 2.400000,a; = 0.000000,7 = 0.000000.
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Substituting into (7), we have the approximate solution to (10) as
u(x) = x? — x,
which is the exact solution itself.

The computational results are shown in Table 1.

Case 2: Using Chebyshev Basis Functions of the first kind
Let n = 3 in (7), we have that

1 .o 3 1y, (1
u(x) = - dsX + (Eaz +Ea3 +§T1>x + (Eal +a, +rl>x
1 1 1

tag+sa;—>a; — a3 — 574 (13)
Substituting (13) into (10) and applying the Caputo property

0, Y € Ng,

D%xY = 'y +1) _
Evosnr LA G

on the left-hand side, we get,

1 3 1
8a3x5/2 8(7612 +7a3 +7T1)x2

—_ _.|__
5 vm 3 Vr
3
2(%a1+a2+1'1)\/§ §x7—2\/§ 1
+ —~ "
Vr Vr 12
11 .o 3 1 , (1
—§x<§a3x +<§a2 +§a3 +§T1>x +<§a1+a2+rl)x)
1 1 1
tag+sa;—sa; —az;—57, =0 (29)

Now, collocate (13) at the equidistant points, that is, x; = (%) kwithn =3, k=1,23,4,t0

obtain the following systems of equations:

1 1 3 3 3
= ——(— 2 — 2 — 2
A 13243200 7T%( 7207200a,m2 — 120120072 — 6306300a,7

3 3 3
—3963960a,m2 — 1081080a3mz — 39639607 72 + 1647360m + 51068160a,n

+510681607t, + 17297280ma, + 64796160maz) =0
3

11 5 5
Ay = —oes——3 (= 2 —1051 5 _ 3
2= 23243200 n%( 5585580a,m 05105072 — 6306300a,m
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3 3 3
—3963960a,n2 — 1312740a;m2 — 396396072 — 43243200\/%611 + 296524800a,
+3248960m +17297280ma, — 149909760\/Ea3 — 124924800\/Ea2 — 124924800\/ET1
+58955520ma; + 52807040ma, — 528070407t — 9609600\/5) =0

1 1 3 3

3
=~ (— 27— 7 2
As 4324320()” (—2934360a,r 6606601 3963960a,m

w N W

3 3
—3963690a, 72 — 1833975a,72 — 293436007, 72 — 365164800vTa, + 53680640a,7

+58988800m +51068160ma, — 124924800+/ma, — 452035584+/rma; — 365164800/mt,

+45450240ma; + 52807040ma,; + 53680640mt; — 19219200v/7) = 0

1 1 3 3 3
= ——(— 2 — 2 — Z
Ay 3= o (~2235090am2 — 18018072 — 1081080aom

2
—1312740a1n% - 1833975a2n% - 18339751171% — 604251648vma; + 55232007
—149909760+ma, — 452035584+/ma, — 452035584+/1rt; + 45450240mas
+45450240m7, + 58955520ma, + 64796107a, + 32526336mas + 4612608y1) = 0
Using the initial condition u(0) = 0, in (13), we obtain,
1 1

Ag == a0+§a1—§a2—a3—511=0

Solving the above equations via MAPLE 18 , we obtain values
a, = 3.600000,a; = —6.000000,a, = 2.400000,a; = 0.000000,7 = 0.000000.
Substituting into (22), we have the approximate solution to (25) as
u(x) = x? — x,
which is the exact solution itself.

The computational results are shown in Table 1.

Example 4.2: Consider the following linear fractional integro-differential equation (Njoseh and
Mamadu, 2016c¢)

3\/§F(§)

5
Dau(x) = ——= — %xz - ix + [ (et + X2tu()dt, x 2 0,t <1, (15)

subject to u(0) = u'(0) = 0. The exact solution is given as u(x) = x2.
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Case 1: Using Mamadu-Njoseh Basis Functions
Letn = 2 in (7), we have that

5 5 5 , (1 5 5
u(x) = (—az 0 + —Tz)x + (Eal +ga2 +€1'1 + 812>x
1 1 1 1
+a0+5a1_za2_ZT1_ZT2 (16)
Substituting (16) into (15) and applying the Caputo property
01 y E Na'

D%xY = F(y + 1)

_ V—a' €,y =

on the left-hand side, we get,

5 5 5
8 (ﬁaz +15T +ﬁrz)x3/2

3 NG
1 5 5 5 3
2(7a1+6a2+671+612)\/§ %xZ—Z\/— 1
+ _ ——x
N Nz 12
1 (5 5 +5 ) +(1 +5 +5 +5 )
X\t tph) X Tzt tghtyghitgn)*

lTl_iTZ :O (17)

1 1
+ap+-a; ——a; —
07271 472 4

Now, collocate (17) at the equidistant points, that is, x; = (g) kwithn=2, k=1,2,3,t0

obtain the following systems of equations:

3 3

1
A= ————= (997920a07r2 + 16632012 + 873180a1n2+623700a27r2 + 6237007 2
5987520 E

+6237OOTZ7TE — 2395008ma, — 5892480a,r + 51068160m7; — 589248017,) = 0

3
2

Ay = = (7733880a1n2 + 14553077 + 873180a0n2+571725a2n

5987520 -

3
+571725r1n5 + 5717257,m2 + 2395008a,m — 4105728a,m + 44985601
+5987520/ma, + 14414400vma, + 14414400V/nt, + 14414400v77,
—6492288ma, — 64922881, — 649228817, + 1330560v/1) = 0

3
Aj = m 3( 223509Oa37r2 + 1039507T2 + 623700a07r2 + 5671725mn2
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3
+4623307,72 — 71257600, — 7186567 + 14414400v7a, + 35112000V,

—7125760mt, — 712576077, + 45450240ma, — 58955520ma, + 2217600v7) = 0
Using the initial condition on u(0) = u'(0) = 0, on (17), we obtain,
1 1 1 1

A4 = a0+§a1_za2_ZT1_ZT2 :0

1 5 5 5
A5 = Eal'i'gaz +ET1 +ET2 = O

Solving the above equations via MAPLE 18, we obtain values
a, = 2.600000,a; = —4.000000,a, = 2.400000,a; = 0.000000,7,; = 0.000000,
7, = —0.000000.
Substituting into (17), we have the approximate solution to (10) as
u(x) = x2.

The computational results are shown in Table 2.

Case 2: Using Chebyshev Basis Functions of the first kind
Letn = 2 in (7), we have that

()_(5 +5 +5 )2+(1 +5 +5 +5>
u(x) = 1Za2 1271 1212x Za1 6a2 6T1 6r2x

1 1 1 1
t+ap+-a;—-a, —-1, — -7 16
0Tz~ 70— T1 ;T (16)

Substituting (16) into (15) and applying the Caputo property

0, Y € Ng,
DY = Iy +1)

_ V—a' €,y =
aa F(y_j+1)x y ay aa

on the left-hand side, we get,

5 5 .5 7\ . a
(ﬁaz + ﬁTl +ﬁT2)x

8
3 N
1 5 5 5 8 3
2(7(114'6(12 +6T1+€T2)\/§ §X2—2\/} 1
’ Vr TR 12t

1 (5. .5 .5 s (L 5.5 +5>
2% (12‘7‘2 121 12T2)x (2“1 e Tl Tghz)*
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1 1 1 1
+a0+za1—za2—z‘[1—z‘[2—0 (17)

Now, collocate (17) at the equidistant points, that is, x; = (%) kwithn=2, k=1,2,3,t0

obtain the following systems of equations:

1 3 3 3 3 3
— (48510a,m2 + 30492a,n2 + 304927 72 + 304927,m2 + 924072

T2

A::
1™ 332640

—392832a,m — 39283271, — 39283271, — 133056ma,; — 12672m) = 0

1
A = —_—
z 332640 3
T2

3
2

3 3 3 3
(48510aym2 + 28413a,m2 + 284131 2 + 284131,m2 + 429664,

3
+8085m2 — 133056ma, — 228096ma; — 24992m+332640Vma, + 969960vra,
+969960rT; + 969960077, — 406208ma, — 406208m7, — 40620871,
+ 73920v7) = 0
1

A3 = 332640 2
T2

3 3 3 3 3
(30492aym2 + 28413aym2 + 22572t,m222572t,m2 + 508212

—392832ma, — 412928ma, — 45371 + 2808960+/ma, — 960960+ma,
+2808960+/1t; + 280890mt, — 41292817, — —412928n7, + 147840+/7) = 0
Using the initial condition on u(0) = u'(0) = 0, on (17), we obtain,
1 1 1 1

A4 = a0+§a1—§a2—§’[1—§’[2=0
1
A5 = Ea1+a2+T1+T2=O

Solving the above equations via MAPLE 18, we obtain values
a, = 2.600000,a,; = —4.000000,a, = 2.400000,a; = 0.000000,7, = 0.000000,
7, = —0.000000
Substituting into (17), we have the approximate solution to (10) as
u(x) = x2.

The computational results are shown in Table 2.
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Table 1: Comparison of the result between the exact and the approximate solution for case

1 and example 4.1; Case 1

X Exact Approximate Approximate Error
Solution (MNPS) Solution (CPS) (MNPS & CPS)
0.01 -0.0099000 -0.0099000 -0.0099000 0.0000e+00
0.02 -0.0196000 -0.0196000 -0.0196000 0.0000e+00
0.03 -0.0291000 -0.0291000 -0.0291000 0.0000e+00
0.04 -0.0384000 -0.0384000 -0.0384000 0.0000e+00
0.05 -0.0475000 -0.0475000 -0.0475000 0.0000e+00
0.06 -0.0564000 -0.0564000 -0.0564000 0.0000e+00
0.07 -0.0651000 -0.0651000 -0.0651000 0.0000e+00
0.08 -0.0736000 -0.0736000 -0.0736000 0.0000e+00
0.09 -0.0819000 -0.0819000 -0.0819000 0.0000e+00
0.10 -0.0900000 -0.0900000 -0.0900000 0.0000e+00

Table 2: Comparison of result between the exact and the approximate solution for case 1

and example 4.2; Case 2

X Exact Approximate Approximate Error
Solution Solution (MNPS) Solution (CPS) (MNPS & CPS)
0.01 0.0001000 0.0001000 0.0001000 0.0000e+00
0.02 0.0004000 0.0004000 0.0004000 0.0000e+00
0.03 0.0009000 0.0009000 0.0009000 0.0000e+00
0.04 0.0016000 0.0016000 0.0016000 0.0000e+00
0.05 0.0025000 0.0025000 0.0025000 0.0000e+00
0.06 0.0036000 0.0036000 0.0036000 0.0000e+00
0.07 0.0049000 0.0049000 0.0049000 0.0000e+00
0.08 0.0064000 0.0064000 0.0064000 0.0000e+00
0.09 0.0081000 0.0081000 0.0081000 0.0000e+00
0.10 0.0100000 0.0100000 0.0100000 0.0000e+00
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Figure 1: Comparison for Case 1
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Figure 2: Comparison for Case 2

5. Discussion of Results

The accuracy of the Tau-Collocation
approach for the solution of the fractional
integro-differential equation has been viewed
from two numerical examples. Both
Mamadu-Njoseh and Chebyshev orthogonal
polynomials were applied as basis functions
to seek the approximate solutions of the
numerical examples considered. The
resulting numerical evidence for both

126

examples considered with Mamadu-Njoseh
and Chebyshev basis functions shows
absolute convergence as shown in Figures 1
and 2. This observation suggests that the
Mamadu-Njoseh and Chebyshev orthogonal
basis functions exhibit the same rate of
convergence as noted in Mamadu and Njoseh
(2016b) and Njoseh and Mamadu (2016d).
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6. Conclusion

This study considered a numerical method
for solving fractional Fredholm integro-
differential equations. It was established that
the method is an effective solver for integro-
differential equations and is highly accurate.
It is also evident that the method offers
several advantages which include cost-
effectiveness, as no extra interpolation is
required in other to achieve several outputs,
ease of implementation, easy to program and
excellent rate of convergence
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