
Nigerian Journal of Science and Environment 2023 Vol 21 (1) 381 - 396 

381 
 

FRACTIONAL TRANSMISSION MODEL FOR ZIKA VIRUS 

 

Faith O. Oderhohwo*1, Newton I. Okposo2
, Augustine O. Atonuje3 

 
1,2,3 Department of Mathematics, Delta State University, PMB 1,Abraka, Delta State, Nigeria 

Correspondence: Faith O. Oderhohwo, faiththemore@yahoo.com 

Abstract 

In this work, we studied the dynamics of a Zika virus model within 

the framework of the Caputo fractional derivative. Using a fixed-

point approach, we establish conditions for which the considered 

fractional model admits a unique system of solutions. The two-step 

Adams-Bashforth numerical scheme incorporating the fractional 

order parameter index σ is then used to furnish numerical 

simulations demonstrating the behaviour of the model state variables 

with respect to distinct values of the fractional order parameter 

index. 
 

As the value of σ increases from 0.7 to 1, there is decrease in the 

number of susceptible individuals and then a gradual increase after 

some time t, until it steadies at equilibrium.  

It was also observed that as the value of the fractional order 

parameter increases from 0.7 to 1 the number of exposed and 

infected individual decreases while the number of recovered 

individual increases after some time. Furthermore as the value of 

susceptible and exposed vector decreases, the number of infected 

vector increases and then decreases after some time. 

 

Keywords: Fixed-point; Numerical scheme; Fractional derivatives; 

Fractional order parameter; Zika virus. 

 

Introduction 

Zika virus was named after the Zika forest 

in Uganda where it was first discovered 

over 70 years ago by some researcher who 

were working on YFVD and was first 

isolated in a rhesus monkey. The virus 

belongs to the genus Flavi virus family 

with about 53 different species and has no 

specified antiviral drug or vaccine (Dick et 

al., 1952). Nigeria discovered and reported 

her first human cases in year 1954. 

Zika virus disease is caused by bites of 

infected female Aedes mosquitoes “Aedes 

aegypti ”which are phylogenetically 

related to the ones that cause mosquito 

borne flavi viruses. This virus can be 

found in Blood, Urine, Saliva, semen, 

breast milk.  

It is well documented that the transmission 

of Zika virus is possible via three main 

route, namely, between human to human 

via sexual interaction, transplacental 

transmission between an infected mother 

and the new born child, unscreened blood 
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transfusion etc, human to vector and vector 

to human. This allows us to take into 

account transmissions arising from both 

human-to-human interactions as well as 

interactions between vector and human. 

Prevention of Zika virus involves 

deliberate measures which include 

prevention of arbo viral infection by using 

mosquito treated nets, wearing long gear 

covering body, insecticides, repellents, or 

bird nets. Efforts towards having a vaccine 

to prevent Zika virus are currently ongoing 

(Barrett, 2018).  

Several authors have studied different 

mathematical models describing the spread 

of Zika virus within the framework of 

systems of ordinary differential equations 

within the framework of classical (or 

integer-order) and fractional derivatives, 

however, models with integer-order 

derivatives do not adequately account for 

hereditary and memory effects associated 

with many biological processes (Rezapour 

et. al., 2020), the fractional order operators 

incorporate hereditary properties and 

provides good description of the memory 

effects associated with many physical 

systems. 

In this article, we employ a SEIR-type 

epidemic modeling framework comprising 

of two sub-populations, namely, human 

and mosquito vector sub-populations to 

investigate the dynamics of a fractional 

Zika virus model with seven 

epidemiological compartments consisting 

of susceptible, exposed, infectious and 

recovered humans as well as susceptible, 

exposed and infectious mosquitoes within 

the framework of the Caputo fractional 

derivative. For each of the mentioned sub-

populations, a compartmental model is 

constructed to simulate Zika virus 

transmission while an interaction between 

both sub-populations occurs through 

mosquito bites. We incorporate a linear 

incidence term for both human to human 

and vector to human transmissions.  

 

2 Preliminaries 

In the present section, we present some 

fundamental definitions and properties on 

fractional differential and integral 

operators related to the Caputo type. 

Definition 1. (Podlubny, 1999; Caputo, 

1967) The Riemann-Liouville fractional 

integral of order 𝜎of a function 𝑔 ∈ 𝐶𝜇,𝜇 ≥

 - 1 is defined as 

𝐼𝑡
𝜎[𝑔(𝑡)] = {

𝑔(𝑡),                                              𝜎 = 0, 𝑡 > 0,      

1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏)𝑑𝜏,         𝜎 > 0, 𝑡 > 0,
𝑡

0

       (2.1) 

where 0 <𝜎<1. 
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Definition 2. (Podlubny, 1999; Caputo, 

1967) The Caputo fractional derivative of 

order 𝜎of a function 𝑔 ∈ 𝐶−1
𝑚
,
𝑚 ∈ ℕ ∪ {0}  

is defined as 

𝐷0
𝐶

𝑡
𝜎[𝑔(𝑡)] =

{
 
 

 
 𝑔(𝑚)(𝑡) ≔

𝑑𝑚𝑔(𝑡)

𝑑𝑡𝑚
,                                                  𝜎 = 𝑚,

1

Γ(𝑚 − 𝜎)
∫ 𝑔(𝑚)(𝑡)(𝑡 − 𝜏)𝑚−𝜎−1𝑑𝜏,𝑚 − 1 < 𝜎 < 𝑚.
𝑡

0

   (2.2) 

Lemma 1. (Atangana and Owolabi, 2018) 

Let 𝜎 ∈ (0,1) 𝑎𝑛𝑑 ℋ ∈ 𝐶([0, 𝑇], ℝ+) be a 

nonlinear function. Then the fractional IVP 

in Caputo derivatives 

{
𝐷𝑡
𝜎θ(𝑡) = ℋ(𝑡, 𝜃(𝑡)), 𝑡 ∈ [0, 𝑇],0

ℂ

𝜃(0) = 𝜃0,                                          
                                                (2.3) 

has a unique solution given as 

𝜃(𝑡) = 𝜃0 +
1

Γ(𝜎)
∫ (𝑡 − 𝑠)𝜎−1ℋ(𝑠, 𝜃(𝑠))𝑑𝑠.
𝑡

0

                                   (2.4) 
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3 

MODEL FORMULATION 

In the present consideration, we consider 

the fractional version of the model 

proposed by Ali et. al. (2022). the total 

human population denoted by 𝑁ℎ(𝑡) is 

subdivided into four independent 

epidemiological compartments, namely, 

susceptible humans 𝑆ℎ(𝑡), exposed 

humans 𝐸ℎ(𝑡), infected humans 𝐼ℎ(𝑡), and 

recovered humans 𝑅ℎ(𝑡), such that 

𝑁ℎ(𝑡)  =  𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) +

𝑅ℎ(𝑡)while the entire vector population 

denoted by 𝑁𝑣(𝑡) is subdivided into three 

independent epidemiological 

compartments, namely, susceptible vectors 

𝑆𝑣(𝑡), exposed vectors 𝐸𝑣(𝑡) and infected 

mosquito 𝐼𝑣(𝑡) such that𝑁𝑣(𝑡)  =  𝑆𝑣(𝑡) +

𝐸𝑣(𝑡) + 𝐼𝑣(𝑡). 

Susceptible humans and mosquitoes are 

recruited into the susceptible 

compartments 𝑆ℎand 𝑆𝑣at rates Πhand Πv, 

respectively. We represent by 𝜆𝑆ℎ = (𝜆1 +

𝜆2)𝑆ℎthe incidence rate of infection in the 

human population where 𝜆1 = 𝛽hIv is the 

rate at which susceptible individuals 

acquire infection due to effective contact 

with an infected vector and 𝜆2=𝜌𝛽hIhis the 

rate at which susceptible individuals 

acquire infection due to sexual interaction 

with infected individuals. Here, 𝛽his the 

effective contact rate between susceptible 

humans and infected mosquitoes while 𝜌is 

a modification parameter that accounts for 

the relative infectiousness of individuals in 

the Ih relative to those in the Iv 

compartment. Similarly, we represent by 

𝛽vIhSv the incidence rate of the susceptible 

vector population where 𝛽vdenotes the 

transmission rate from infected humans to 

susceptible mosquito. The disease induced 

mortality rate is denoted by 𝛿. Natural 

mortality rates due for the human and 

vector subpopulations are denoted by μh 

and μv respectively. Lastly, γ and 𝜏are the 

natural and treatment rates. Following the 

above description for the interrelationship 

between compartments, we arrive at the 

following coupled system of nonlinear 

ordinary differential equations describing 

the Zika virus dynamics: 



Nigerian Journal of Science and Environment 2023 Vol 21 (1) 381 - 396 

385 
 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑆ℎ(𝑡)

𝑑𝑡
= Πℎ − 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − 𝜇ℎ𝑆ℎ

𝐸ℎ(𝑡)

𝑑𝑡
= 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − (𝜇ℎ + 𝜒)𝐸ℎ

𝐼ℎ(𝑡)

𝑑𝑡
= 𝜒𝐸ℎ − (𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ

𝑅ℎ(𝑡)

𝑑𝑡
= 𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ

𝑆𝑣(𝑡)

𝑑𝑡
= Π𝑣 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝑣𝑆𝑣

𝐸𝑣(𝑡)

𝑑𝑡
= 𝛽𝑣𝑆𝑣𝐼𝑣 − (𝜇𝑣 + 𝛿)𝐸𝑣

𝐼𝑣(𝑡)

𝑑𝑡
= 𝛿𝐸𝑣 − 𝜇𝑣𝐼𝑣,                                 

                                       (3.1) 

With associated initial conditions 

Sh(0) = Sh0,Eh(0) = Eh0, Ih(0) = Ih0,Rh(0) = Rh0, Sv(0) = Sv0,Ev(0) = Ev0, Iv(0) = Iv0 . 

 

Next, we extend the classical model (3.2) 

to a fractional model by incorporating the 

time-fractional derivative in place of the 

classical ordinary derivative for each 

equation in the system. We will consider 

the fractional model in the Caputo sense, 

namely, 

{
 
 
 
 

 
 
 
 
𝐷𝑡
𝜎𝑆ℎ(𝑡) = Πℎ − 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − 𝜇ℎ𝑆ℎ0

ℂ ,   

𝐷𝑡
𝜎𝐸ℎ(𝑡) = βℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − (𝜇ℎ + 𝜒)𝐸ℎ0

ℂ ,

𝐷𝑡
𝜎𝐼ℎ(𝑡) = χ𝐸ℎ − (𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ0

ℂ ,                

𝐷𝑡
𝜎𝑅ℎ(𝑡) = 𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ0

ℂ ,                                 

𝐷𝑡
𝜎𝑆𝑣(𝑡) = Π𝑣 − 𝛽𝑣𝑆𝑣𝐼ℎ − 𝜇ℎ𝑆ℎ0

ℂ ,                 

𝐷𝑡
𝜎𝐸𝑣(𝑡) = β𝑣𝑆𝑣𝐼ℎ − (𝜇ℎ+𝛿)𝐸𝑣0

ℂ ,                  

𝐷𝑡
𝜎𝐼𝑣(𝑡) = 𝛿𝐸𝑣 − 𝜇𝑣𝐼𝑣0

ℂ ,                                   

                                       (3.2) 

with associated non-negative initial conditions 

𝑆ℎ(0) = 𝑆ℎ, 𝐸ℎ(0) = 𝐸ℎ0, 𝐼ℎ(0) = 𝐼ℎ0, 𝑅ℎ(0) = 𝑅ℎ0,

𝑆𝑣(0) = 𝑆𝑣0, 𝐸𝑣(0) = 𝐸𝑣0, 𝐼𝑣(0) = 𝐼𝑣0
                       (3.3) 

𝐷𝑡
ℴ

0
𝕔 represents the fractional differential operator in the Caputo sense with0 < 𝜎 ≤ 1being 

the fractional parameter index. 

4 Existence and Uniqueness of 

Solutions 

Under certain conditions, the existence and 

uniqueness of solutions for the considered 

model with respect to the Caputo fractional 

derivative can be investigated via a fixed-

point technique. For the sake of 

convenience in our subsequent 

investigations, we make the following 

notations for the right-hand terms 

appearing in (3.2). 
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{
 
 
 
 

 
 
 
 
𝔽1(𝑡, 𝑆ℎ(𝑡)) = Πℎ − 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − 𝜇ℎ𝑆ℎ,   

𝔽2(𝑡, 𝐸ℎ(𝑡)) = βℎ𝐸ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − (𝜇ℎ + 𝜒)𝐸ℎ,

𝔽3(𝑡, 𝐼ℎ(𝑡)) = χ𝐸ℎ − (𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ,                

𝔽4(𝑡, 𝑅ℎ(𝑡)) = 𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ,                                 

𝔽5(𝑡, 𝑆𝑣(𝑡)) = Π𝑣 − 𝛽𝑣𝑆𝑣𝐼ℎ − 𝜇ℎ𝑆ℎ,                 

𝔽6(𝑡, 𝐸𝑣(𝑡)) = β𝑣𝐸𝑣𝐼ℎ − (𝜇ℎ+𝛿)𝐸𝑣,                 

𝔽7(𝑡, 𝐼𝑣(𝑡)) = 𝛿𝐸𝑣 − 𝜇𝑣𝐼𝑣,                                  

                               (4.1) 

In view of Lemma 1, applying the 

Riemann-Liouville integral operator on 

both sides of each equation in (3.2) yields 

the following equivalent system of 

fractional integral equations: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑆ℎ(𝑡) = 𝑆ℎ(0) +

1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽1(𝜏, 𝑆ℎ𝜏)𝑑𝜏,
𝑡

0

𝐸ℎ(𝑡) = 𝐸ℎ(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽2(𝜏, 𝐸ℎ(𝜏))𝑑𝜏,
𝑡

0

𝐼ℎ(𝑡) = 𝐼ℎ(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽3(𝑟, 𝐼ℎ(𝜏))𝑑𝜏,
𝑡

0

𝑅ℎ(𝑡) = 𝑅ℎ(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽4(𝜏, 𝑅ℎ(𝑟))𝑑𝜏,
𝑡

0

𝑆𝑣(𝑡) = 𝑆𝑣(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽5(𝜏, 𝑆𝑣(𝜏))𝑑𝜏,
𝑡

0

𝐸𝑣(𝑡) = 𝐸𝑣(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽6(𝜏, 𝐸𝑣(𝜏))𝑑𝜏,
𝑡

0

𝐼𝑣(𝑡) = 𝐼𝑣(0) +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽7(𝜏, 𝐼𝑣(𝜏))𝑑𝜏,
𝑡

0

                          (4.2) 

Next, we show that the nonlinear functions 𝔽𝑖(i= 1, 2, · · · 7) defined in (4.2) satisfy the 

Lipschitz condition. To this end, we first consider 

𝔽1(𝑡, 𝑆ℎ(𝑡)) = Πℎ − 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − 𝜇ℎ𝑆ℎ.  

Let 𝐼ℎand 𝐼𝑣be two bounded functions on t 𝜖 [0, T] such that ‖𝐼ℎ(𝑡)‖ ≤ 𝜏1 and ‖𝐼𝑣(𝑡)‖ ≤ 𝜏2  

where ‖∙‖ denotes the maximum norm. Then for any two functions 𝑆𝑡
∗(𝑡) and 𝑆𝑡

∗∗(𝑡), we have 

‖𝔽1(𝑡, 𝑆ℎ
∗(𝑡)) − 𝔽1(𝑡, 𝑆𝑡

∗∗(𝑡))‖ = ‖−𝛽ℎ(𝐼𝑣(𝑡) + 𝜌𝐼ℎ(𝑡))(𝑆𝑡
∗(𝑡) − 𝑆ℎ

∗∗(𝑡)) − 𝜇ℎ(𝑆ℎ
∗(𝑡) − 𝑆ℎ

∗∗(𝑡))‖

                                ≤ [𝛽ℎ(‖𝐼𝑣(𝑡)‖ + 𝜌‖𝐼ℎ(𝑡)‖) + 𝜇ℎ]‖𝑆ℎ
∗(𝑡) − 𝑆ℎ

∗∗(𝑡)‖

                      ≤ [𝛽ℎ(𝜏2 + 𝜌𝜏1) + 𝜇ℎ]‖𝑆ℎ
∗(𝑡) − 𝑆ℎ

∗∗(𝑡)‖.          

 

This implies 

‖𝔽1(𝑡, 𝑆ℎ
∗(𝑡)) − 𝔽1(𝑡, 𝑆𝑡

∗∗(𝑡))‖ ≤ 𝒦1‖𝑆ℎ
∗(𝑡) − 𝑆ℎ

∗∗(𝑡)‖                             (4.3) 

where 𝒦1 = 𝛽ℎ(𝜏2 + 𝜌𝜏1) + 𝜇ℎ. It follows that, 𝔽1(𝑡, 𝑆ℎ(𝑡)) satisfies the Lipschitz 

condition. Moreover, is a contraction if 0 ≤ 𝛽ℎ(𝜏2 + 𝜌𝜏1) + 𝜇ℎ < 1 In line with the 

argument leading to (4.3), we can also find constants 𝒦2 ≔ 𝜇ℎ + 𝜒,𝒦3 ≔ 𝜇ℎ + 𝛾 + 𝜏,𝒦4 ≔
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𝜇ℎ, 𝒦5 ≔ 𝛽𝑣𝜏1 + 𝜇𝑣, 𝒦6 ≔ 𝛿 + 𝜇𝑣, 𝑎𝑛𝑑 𝒦7 ≔ 𝜇𝑣such that the remaining functions 𝔽𝑖(i= 2, 

3,…, 7) satisfy 

‖𝔽2(𝑡, 𝐸ℎ
∗(𝑡)) − 𝔽2(𝑡, 𝐸ℎ

∗∗(𝑡))‖ ≤ 𝒦2‖𝐸ℎ
∗(𝑡) − 𝐸ℎ

∗∗(𝑡)‖,   

‖𝔽3(𝑡, 𝐼ℎ
∗(𝑡)) − 𝔽3(𝑡, 𝐼ℎ

∗∗(𝑡))‖ ≤ 𝒦3‖𝐼ℎ
∗(𝑡) − 𝐼ℎ

∗∗(𝑡)‖,       

‖𝔽4(𝑡, 𝑅ℎ
∗(𝑡)) − 𝔽4(𝑡, 𝑅ℎ

∗∗(𝑡))‖ ≤ 𝒦4‖𝑅ℎ
∗(𝑡) − 𝐼ℎ

∗∗(𝑡)‖,   

‖𝔽5(𝑡, 𝑆𝑣
∗(𝑡)) − 𝔽5(𝑡, 𝑆𝑣

∗∗(𝑡))‖ ≤ 𝒦5‖𝑆𝑣
∗(𝑡) − 𝑆𝑣

∗∗(𝑡)‖,    

‖𝔽6(𝑡, 𝐸𝑣
∗(𝑡)) − 𝔽6(𝑡, 𝐸𝑣

∗∗(𝑡))‖ ≤ 𝒦6‖𝐸𝑣
∗(𝑡) − 𝐸𝑣

∗∗(𝑡)‖,  

‖𝔽7(𝑡, 𝐼𝑣
∗(𝑡)) − 𝔽7(𝑡, 𝐼𝑣

∗∗(𝑡))‖ ≤ 𝒦7‖𝐼𝑣
∗(𝑡) − 𝐼𝑣

∗∗(𝑡)‖,      

Furthermore, these functions are contractions if 0 ≤ 𝒦𝑖 < 1 (i= 2.3. · · ·, 7).  

Next, in view of (4.1) we rewrite the fractional Zika virus model (3.2) as   

  {
𝐷𝑡
σ

0
ℂ 𝐗(𝑡) = 𝑔(𝑡, 𝐗(𝑡)), 0 < 𝑡 < 𝑇 < ∞,

𝐗(0) = 𝐗0,
(4.4) 

Where X(t), X(0) and 𝑔(𝑡, 𝐗(𝑡)) are vector functions defined as 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐗(𝑡) =

(

 
 
 
 
 

𝑆ℎ(𝑡)

𝐸ℎ(𝑡)

𝐼ℎ(𝑡)

𝑅ℎ(𝑡)

𝑆𝑣(𝑡)

𝐸𝑣(𝑡)

𝐼𝑣(𝑡))

 
 
 
 
 

,     𝐗(0) =

(

 
 
 
 
 

𝑆ℎ(0)

𝐸ℎ(0)

𝐼ℎ(0)

𝑅ℎ(0)

𝑆𝑣(0)

𝐸𝑣(0)

𝐼𝑣(0))

 
 
 
 
 

,

𝑔(𝑡, 𝐗(𝑡)) =

(

 
 
 
 
 

𝔽1(𝑡, 𝑆ℎ(𝑡))

𝔽2(𝑡, 𝐸ℎ(𝑡))

𝔽3(𝑡, 𝐼ℎ(𝑡))

𝔽4(𝑡, 𝑅ℎ(𝑡))

𝔽5(𝑡, 𝑆𝑣(𝑡))

𝔽6(𝑡, 𝐸𝑣(𝑡))

𝔽7(𝑡, 𝐼𝑣(𝑡)))

 
 
 
 
 

=

(

 
 
 
 
 

Πℎ − 𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − 𝜇ℎ𝑆ℎ
𝛽ℎ𝑆ℎ(𝐼𝑣 + 𝜌𝐼ℎ) − (𝜇ℎ + 𝜒)𝐸ℎ

𝜒𝐸ℎ − (𝜇ℎ + 𝛾 + 𝜏)𝐼ℎ
𝛾𝐼ℎ − 𝜇ℎ𝑅ℎ

Π𝑣 − 𝛽𝑣𝑆𝑣𝐼ℎ − 𝜇𝑣𝑆𝑣
𝛽𝑣𝑆𝑣𝐼ℎ − (𝜇𝑣 + 𝛿)𝐸𝑣

𝛿𝐸𝑣 − 𝜇𝑣𝐼𝑣 )

 
 
 
 
 

.

 

Then the problem of investigating the 

existence and uniqueness of solutions for 

the considered fractional Zika virus model 

(3.2) is equivalent to that of investigating 

the existence and uniqueness of solutions 

to the fractional IVP (4.4). In this 

direction, we establish the following 

theorem which is adapted from (Lyons, 

2017). 

Theorem 4.1 Assume that the nonlinear functions 𝔽𝑖(𝑡)(i= 1, 2, · · · ,7) satisfy the Lipschitz 

condition and that there exist constants Mi>0 (i= 1, 2, · · · ,7) such that ‖𝔽𝑖(𝑡,∙)‖ ≤ 𝑀𝑖hold 

on the rectangle 𝔹 = {(𝑡, 𝑋): |𝑡| ≤ 𝑎, |𝑋 − 𝑋0| ≤ 𝑏}containing thepoint (0, X0). Then the 
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fractional IVP (4.4) admits a unique solution on the interval  𝒥 ≔ {𝑡: |𝑡| ≤ ℎ} 𝑤ℎ𝑒𝑟𝑒 ℎ =

max{ℎ1, ℎ2, . . . , ℎ𝑟} = 𝑚𝑖𝑛 {𝑎, (
𝑏

𝑀
Γ(𝜎 + 1))

1

𝜎
}  𝑎𝑛𝑑 𝑎 ≔ max (𝑎1, 𝑎2, . . . , 𝑎7} , 𝑏 ≔

max{𝑏1, 𝑏2, . . . , 𝑏7} 𝑎𝑛𝑑 𝑀 ∶= max{𝑀1, 𝑀2, . . . , 𝑀7}are positive constants. 

Proof: In view of (4.2), we have the following equivalent Voltera-type integral equation: 

𝐗(𝑡) = 𝐗0 +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏, 𝐗(𝜏))𝑑𝜏.
𝑡

0

                                 (4.5) 

Existence of solutions: We will consider 

only the interval [0, h] as a similar 

argument also holds in the interval [−h, 0]. 

The proof for the existence of solutions is 

established by constructing a sequence 

{𝐗𝑘(𝑡)} (𝑘 = 1,2,3, … )of successive 

approximations (Picard’s iterates) 

𝐗0(𝑡) = 𝐗0, 𝐗𝑘+1(𝑡) = 𝐗0 +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏, 𝐗𝑘(𝜏))𝑑𝜏, 𝑘 = 0,1,2, … , 𝑡𝜖[0, ℎ],
𝑡

0

 (4.6) 

which converges uniformly to a function 

which is a solution of the integral equation 

(4.5) on [0, h]. This is accomplished in the 

following steps: 

STEP I: We show via an induction 

argument that the sequence of successive 

approximations constructed in (4.6) are 

properly defined for every 𝑡𝜖[0, ℎ], and in 

this interval the following inequality holds 

{
 
 

 
 |Χ𝑘(𝑡) − Χ0| ≤

𝑀ℎ𝜎

Γ(𝜎 + 1)
≤ 𝑏                

|Χ𝑘+1(𝑡) − Χ𝑘(𝑡)| ≤
𝑀𝐾𝑘𝑡(𝑘+1)𝜎

Γ((𝑘 + 1)𝜎 + 1)

                                          (4.7) 

Note that Xk+1(t) is well defined in the 

interval [0, h] if the point (t,Xk(t)) remains 

in the rectangle 𝔹for every t 𝜖 [0, h]. 

Clearly, for k = 0, X0(t) is defined on [0, h] 

and satisfies (4.7) trivially on [0, h]. Now, 

assume that for k = n ≥ 1, Xnis defined and 

satisfies (4.7) on [0, h], then the point 

(t,Xn(t)) remains in B for t in [0, h]. 

Moreover, 𝑔(t, Xn(t)) exists as a 

continuous function on [0, h]. Hence, by 

(4.6) Xn+1(t) is defined on [0, h] and that 

concludes the induction argument. 

Furthermore, from (4.6), the induction 

hypothesis and (4.7) we have 

|𝐗𝑘+1(𝑡) − 𝐗0| ≤
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1|𝑔(𝜏, 𝐗𝑘(𝜏))|𝑑𝜏 ≤

𝑀𝑡𝜎

Γ(𝜎 + 1)
≤

𝑀ℎ𝜎

Γ(𝜎 + 1)

𝑡

0

≤ 𝑏. 

Hence, the property (4.7) is satisfied by Xk+1 and the induction argument is complete. 

STEP II: In this step, we show via an induction argument that the inequality 
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|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)| ≤
𝑀

𝒦

(𝒦𝑡𝜎)𝑘+1

Γ((𝑘 + 1)𝜎 + 1)
.                                        (4.8) 

Holds on [0, ℎ]. For the case 𝑘 = 0, we have  

|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)| = |
1

Γ(𝜎)
| ∫ (𝑡 − 𝜏)𝜎−1|𝑔(𝜏, 𝐗𝑘(𝜏))|𝑑𝜏

𝑡

0

                                                ≤
1

Γ(𝜎)
∫ (𝑡 − 𝑟)𝜎−1|𝑔(𝜏, 𝐗0(𝜏))|𝑑𝜏 ≤

𝑀𝑡𝜎

Γ(𝜎+1)
.

𝑡

0

 

Assume that (4.8) is true for 𝒦 ≥ 1, that is  

|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)| ≤
𝑀𝑡𝜎

Γ(𝑘𝜎 + 1)
𝑡𝑘𝜎  

on[0, ℎ]where 𝒦 is the Lipschetz constant. Then  

|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)|

≤
1

Γ(𝜎)
∫ (𝑡 − 𝑟)𝜎−1|𝑔(𝜏, 𝐗𝑘(𝜏)) − 𝑔(𝜏, 𝐗𝑘−1(𝜏))|𝑑𝜏
𝑡

0

≤
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1|𝐗𝑘(𝜏) − 𝐗𝑘−1(𝜏)|𝑑𝜏
𝑡

0

≤
𝑀𝒦𝑘

Γ(𝜎)Γ(𝑘𝜎 + 1)
∫ (𝑡 − 𝜏)𝜎−1𝜏𝑘𝜎𝑑𝜏.
𝑡

0

 

Using the substitution 𝜏 = 𝜔𝑡, we have  

𝑀𝒦𝑘

Γ(𝜎)Γ(𝑘𝜎 + 1)
∫ (𝑡 − 𝜏)𝜎−1(𝜏 − 0)𝑘𝜎𝑑𝜏
𝑡

0

=
𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ(𝜎)Γ(𝑘𝜎 + 1)
∫ (𝑡 − 𝜔)𝜎−1𝜔𝑘𝜎𝑑𝜏               
𝑡

0

=
𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ(𝜎)Γ(𝑘𝜎 + 1)
𝐵(𝜎, 𝑘𝜎 + 1)                              

=
𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ(𝜎)Γ(𝑘𝜎 + 1)

𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ((𝑘 + 1)𝜎 + 1)
                                          

=
𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ((𝑘 + 1)𝜎 + 1)
. 

Here 𝑩(. , . ) denotes the Beta function. Hence, we have 

|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)| ≤
𝑀𝒦𝑘𝑡(𝑘+1)𝜎

Γ((𝑘 + 1)𝜎 + 1)
 

Therefore, the inequality (4.8) is true for 

all k. 

STEP III. We show that the sequence of 

functions {Xk(t)} defined in (4.6) converge 

uniformly on [0, h]. To this end, we 

observe that the sequence of successive 

approximations consists of the sequence of 

partial sum of the series 
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𝐗0(𝑡) +∑[𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)].

∞

𝑘=0

                                                        (4.9) 

To prove uniform convergence of {Xk(t)}, it is enough to establish that the partial sums of the 

series (4.9) are uniformly convergent. From (4.8) we have 

∑|𝐗𝑘+1(𝑡) − 𝐗𝑘(𝑡)| ≤
𝑀

𝒦
∑

(𝒦𝑡𝜎)(𝑘+1)

Γ((𝑘 + 1)𝜎 + 1)
.                                      (4.10) 

∞

𝑘=0

∞

𝑘=0

 

In other words, the terms in (4.9) are bounded in absolute value on the interval [0, h] by the 

terms in the positive series 

𝑀

𝒦
∑

(𝒦𝑡𝜎)𝑘+1

Γ((𝑘 + 1)𝜎 + 1)

∞

𝑘=0

 

which converges to 
𝑀

𝒦
𝐸𝜎,1(𝒦𝑡

𝜎). Hence, 

by Weierstrass M−test, the series in (4.9) 

converges uniformly on [0, h]. Therefore, 

the sequence {Xk} is uniformly convergent 

on [0, h] to continuous function say X(t). 

STEP IV. In this step, we show that X(t) 

is the solution of the integral equation 

(4.5). Since the sequence {Xk} is 

uniformly convergent to some continuous 

function X(t), then from (4.6) we have

  

𝐗(𝑡) = lim
𝑘→∞

𝐗𝑘+1(𝑡)

= lim
𝑘→∞

[𝑋0 +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏, 𝐗𝑘(𝜏))𝑑𝜏
𝑡

0

]     (4.11)

= 𝑋0 +
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏, 𝐗(𝜏))𝑑𝜏
𝑡

0

 

Since X(t) satisfies the equivalent integral 

equation, then it must satisfy the initial 

value problem (4.4).  

Uniqueness: To complete the proof of the 

theorem, we establish uniqueness of 

solution to the fractional IVP (4.4) with 

Caputo derivative by claiming that there 

exists another solution 𝐗̃(t) := (𝑆̃h(t), 𝐸̃h(t), 

𝐼h(t), 𝑅̃h(t), 𝑆̃v(t), 𝐸̃v(t), 𝐼v(t))𝜏. 

Now, consider the function 𝜃(t) = |𝐗(t) − 

𝐗̃(t)|. Since both X(t) and 𝑋̃(t) are solutions 

to the IVP (4.4), we see that 𝜃0 = |𝐗0 − 𝐗̃0| 

= 0. Furthermore, from Theorem 4.1we 

have 
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               𝜃(𝑡) = |𝐗(𝑡) − 𝐗̃(𝑡)|

= |
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝑔(𝜏, 𝐗(𝜏)) − 𝑔 (𝜏, 𝐗̃(𝜏)) 𝑑𝜏
𝑡

0

|                                          

≤
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1 |𝑔(𝜏, 𝐗(𝜏)) − 𝑔 (𝜏, 𝐗̃(𝜏))| 𝑑𝜏
𝑡

0

                                (4.12)

≤
𝒦

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝜃(𝜏)𝑑𝜏.
𝑡

0

 

Since 𝒦 > 0 𝑎𝑛𝑑 𝜃(𝑡) ≥ 0, the inequality in (4.12) satisfies all conditions of the Gronwall-

type inequality (Denton and Vatsala, 2010). Thus, we have 

𝜃(𝑡) ≤ 𝜃0𝐸𝜎,1(𝒦𝑡
𝜎) = 0 

This proves that 𝑋 = 𝑋̃and hence, the 

solution of the fractional IVP (4.4) exists 

on [0, h] and is unique. Consequently, the 

fractional Zika virus model (3.2) in Caputo 

derivative admits unique solution.  

Remark 4.5:It is easy to see that if 𝜎= 1, 

the proof Theorem 4.4 is similar to 

Picard’s original proof for systems of 

ordinary differential equations with integer 

order derivatives.                 

 

5 Numerical Schemes 

We present corresponding FAB schemes 

for the fractional Zika virus models (4.1) 

with fractional derivative in the Caputo 

sense. We furnish graphical visualizations 

comparing the behaviours of each state 

variables of the fractional Zika virus 

models (4.1) for distinct values of the 

fractional order parameter 𝜎. The 

simulation parameter values are taken as 

h = 0.8, v= 0.08, 𝛽h= 0.007, 𝛽v= 0.009, μh= 

0.0028, μv= 0.071, 𝜌= 0.05, 𝑋= 0.7, 𝛾= 

0.05, 𝜏= 0.08, 𝛿= 0.5 (Bonyah et al, 2017) 

while the initial values used are Sh0 = 100, 

Eh0 = 10, Ih0 = 30, Rh0 = 20, Sv0 = 10, Ev0 = 

50, Iv0 = 10. 

5.1 FAB scheme for model in Caputo 

derivative 

Using the fundamental theorem of integral 

calculus, we obtain the following 

corresponding nonlinear fractional 

Volterrra-type integral equation 

𝑆ℎ(𝑡) − 𝑆ℎ(0) =
1

Γ(𝜎)
∫ (𝑡 − 𝜏)𝜎−1𝔽1(𝜏, 𝑆ℎ(𝜏))𝑑𝜏.
𝑡

0

                             (5.1) 

for the Sh−equation (4.5) in Caputo derivative. At 𝑡 = 𝑡𝑘+1and 𝑡 = 𝑡𝑘, k = 0, 1, 2, …, (5.1) 

can be read as 

𝑆ℎ(𝑡𝑘+1) − 𝑆ℎ(0) =
1

Γ(𝜎)
∫ (𝑡𝑘+1 − 𝑡)

𝜎−1𝔽1(𝑡, 𝑆ℎ(𝑡))𝑑𝑡
𝑡𝑘+1

0

 

 

and 
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𝑆ℎ(𝑡𝑘) − 𝑆ℎ(0) =
1

Γ(𝜎)
∫ (𝑡𝑘 − 𝑡)

𝜎−1𝔽1(𝑡, 𝑆ℎ(𝑡))𝑑𝑡.
𝑡𝑘

0

 

 

respectively. We easily see that, 

𝑆ℎ(𝑡𝑘+1) − 𝑆ℎ(𝑡𝑘) = Χ𝜎,1 − Χ𝜎,2,                                        (5.2) 
where: 

Χ𝜎,1 =
1

Γ(𝜎)
∫ (𝑡𝑘+1 − 𝑡)

𝜎−1𝔽1(𝑡, 𝑆ℎ(𝑡))𝑑𝑡,                      (5.3)
𝑡𝑘+1

0

 

and 

 

Χ𝜎,2 =
1

Γ(𝜎)
∫ (𝑡𝑘 − 𝑡)

𝜎−1𝔽1(𝑡, 𝑆ℎ(𝑡))𝑑𝑡,
𝑡𝑘

0

                              (5,4) 

 

Over the interval [tk, tk+1], the function F1(t, Sh(t)) can be approximated by the two-point 

Lagrange interpolation polynomial of the form 

𝔽1(𝑡, 𝑆ℎ(𝑡)) ≃
𝑡 − 𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘)) +
𝑡 − 𝑡𝑘

𝑡𝑘−1 − 𝑡𝑘
𝔽1(𝑡𝑘−1, 𝑆ℎ(𝑡𝑘−1))

=
𝑡 − 𝑡𝑘−1

ℎ
𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘)) −

𝑡 − 𝑡𝑘
ℎ

𝔽1(𝑡𝑘−1, 𝑆ℎ(𝑡𝑘−1)), 

Whereh= tk− tk−1 is the step-size. Substituting (5.5) into the first and second integrals in (5.3) 

yield 

Χ𝜎,1 =
𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
] −

𝔽1(𝑡𝑘−1, 𝑆ℎ(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
] , (5.5) 

And 

Χ𝜎,2 =
𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
ℎ𝑡𝑘

𝜎

𝜎
−
𝑡𝑘
𝜎+1

𝜎 + 1
] −

𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘−1))

ℎΓ(𝜎)

𝑡𝑘
𝜎+1

𝜎 + 1
 , (5.6) 

 

respectively, after some manipulations. By inserting (5.5) and (5.6) into (5.2), we obtain 

Sℎ(𝑡𝑘+1) = 𝑆ℎ(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝑆ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝑆ℎ(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
]                     (5.7) 

as the final two-step FAB scheme for the Sh−equation (3.2) with Caputo derivative. In the 

same way, we can obtain a similar scheme for each of the remaining equations in (3.2). In 

particular, we have 

𝐸ℎ(𝑡𝑘+1) = 𝐸ℎ(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝐸ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝐸ℎ(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
], 

𝐼ℎ(𝑡𝑘+1) = 𝐼ℎ(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝐼ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝐼ℎ(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
], 
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𝑅ℎ(𝑡𝑘+1) = 𝑅ℎ(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝑅ℎ(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝑅ℎ(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
], 

𝑆𝑣(𝑡𝑘+1) = 𝑆𝑣(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝑆𝑣(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝑆𝑣(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
], 

𝐸𝑣(𝑡𝑘+1) = 𝐸𝑣(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝐸𝑣(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝐸𝑣(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
], 

𝐼𝑣(𝑡𝑘+1) = 𝐼𝑣(𝑡𝑘) +
𝔽1(𝑡𝑘, 𝐼𝑣(𝑡𝑘))

ℎΓ(𝜎)
[
2ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
−
ℎ𝑡𝑘

𝜎

𝜎
+
𝑡𝑘
𝜎+1

𝜎 + 1
]

−
𝔽1(𝑡𝑘−1, 𝐼𝑣(𝑡𝑘−1))

ℎΓ(𝜎)
[
ℎ𝑡𝑘+1

𝜎

𝜎
−
𝑡𝑘+1
𝜎+1

𝜎 + 1
+
𝑡𝑘
𝜎+1

𝜎 + 1
].    (5.8) 

as the two-step FAB scheme for the fractional Zika virus model (3.2) with Caputo derivative. 

5.2 Simulations and discussion of 

results 

Using the above two-step FAB schemes 

(5.8), we present graphical visualizations 

to demonstrate the behaviour of the 

approximate solutions to the fractional 

Zika virus model (3.2) with Caputo 

derivatives for each system variable. The 

plots in each of the graphs are with respect 

to distinct values of the fractional order 

parameter 𝜎with 𝜎= 1.0; 0.9; 0.8; 0.7. The 

time level up to 100 days and the step size 

used for evaluating the approximate 

solutions is h = 0.002. The graphs for 

susceptible individuals Sh(t), exposed 

individuals Eh(t), infected individuals Ih(t), 

recovered individuals Rh(t), susceptible 

vectors Sv(t), exposed vectors Ev(t) and 

infected vectors Iv(t) are presented in 

Figure 1-7, respectively. In each of the 

plots, it is observed that the magnitude of 

𝜎continuously affects the trend of each 

state variable for both the human and 

vector populations. 

Figure 1- 4: plots shows the dynamics of 

the susceptible individuals, exposed 

individual, Infected individual and 

Recovered individual respectively using 

the above scheme for the Caputo 

derivatives. Figure 5-7 demonstrates the 

dynamics of susceptible vectors, exposed 

vectors and infected vectors for different 

values of 𝜎 in each of the plots. 
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Figure 1: As the value of 𝜎 increases from 

0.7 to 1, there is decrease in the number of 

susceptible individuals and then a gradual 

increase after some time until it steadies at 

equilibrium 

 

Figure 2 shows the behaviour of the 

exposed individual using the corresponding 

Eh(t)-schemes of (5.8) for the Caputo 

derivatives for distinct values of the 

fractional parameter 

 

Figure 3: It is observed that as the 

fractional order parameter increases from 

0.7 to 1 the number of infected individual 

decreases after some time 

 

Figure 4 shows the behaviour of the 

recovered individual using the 

corresponding Rh(t)-schemes of (5.8) for 

the Caputo derivatives for distinct values of 

the fractional parameter 

 

Using the corresponding Sv(t)-schemes in 

(5.8) for the Caputo operators, Figure 5 

demonstrates the dynamics of susceptible 

vectors 
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Figure 6: The plots demonstrate the 

dynamics of the exposed vectors for the 

case of the Ev(t)-equation of (3.2) using the 

corresponding Ev(t)-schemes in (5.8) for 

the Caputo 

 

we compare the dynamics of Zika infected 

vectors by presenting plots for the 

approximate Iv(t)-solution using the 

corresponding Iv(t)-schemes of (5.8) for the 

Caputo for different values of 𝜎. It is 

observed that as the fractional order 

parameter increases from 0.7 to 1 the 

population of infected vectors decreases 

after some time 

 

 

6 Conclusions 

We analyzed a fractional mathematical 

model for the transmission dynamics of 

Zika virus under the framework of singular 

kernels. The solution set of the classical 

model is shown to be non-negative and 

positively invariant. We then determine the 

equilibrium points of the model and the 

basic reproduction number is determined 

via the next generation matrix technique. 

Existence and uniqueness of solutions to 

the fractional model with respect to Caputo 

derivatives are established via a fixed-

point technique. Numerical investigations 

using the two-step Adams-Bashforth 

method for the fractional Zika virus model 

with respect to the Caputo fractional 

differential operators are then carried out 

with the purpose of demonstrating the 

dynamics of each of the system variables 

for different values of the fractional order 

parameter. We made comparison of the 

obtained results for each compartment 

with respect to the Caputo derivative. 
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