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The forces which drive growth, development, survival and change within an ecological system 

involving a predator and prey specie are not easily addressed in the field. To better understand the 

dynamics in the system, ecologists have turned to mathematical models. The predator-prey dynamics 

of rat and cat population in a given ecology is studied. The mathematical model proposed by Alfred J. 

Lotka and Vito Volterra called the Lotka-Volterra model for studying predator-prey dynamics is 

utilized. Assumptions were made to suit the given ecology. These assumptions lead to the modification 

of the Lotka-Volterra equations. The equilibrium and stability properties of the modified model is 

established. Results were simulated using MATLAB. 
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INTRODUCTION 
The interactions between individuals in a 

community can take distinct form. An 

interaction between two individuals may be 

beneficial to both individuals or the interaction 

may benefit one individual to the detriment of 

the other individual. When the interaction 

between two individual organisms benefits one 

to the detriment of the other, it is called an 

antagonistic interaction. An example is 

predation. 

Predation is a biological interaction 

between two organisms, the predator and the 

prey. It is the act of the predator feeding on the 

prey, which may lead to the death of the prey. 

Predation provides energy to prolong the life 

and promote the reproduction of the predator to 

the detriment of the prey, which can have a 

major effect on the density and size of a 

population of organism as applied to 

population that when the death rate exceeds the 

birth rate in a population, the size of the 

population usually decreases. 

Predation influences organisms at two 

ecological levels. At the individual level, the 

prey organism has an abrupt decline in fitness 

as measured by its lifetime reproduction success. 

This is because it will certainly not reproduce 

again. And at the community level, predation 

reduces the number of individuals in the prey 

population. But a decrease in the prey’s 

population in turn affects the predator’s 

population. 

Predation can be a powerful determinant 

of a community’s structure. It has the capacity to 

dynamically influence the numbers and quality of 

both the predator and the prey, as it acts as an 

important agent of natural selection on both 

groups. The best-known examples of predation 

involve carnivorous interactions in which one 

animal consumes another. e.g lion hunting 

antelope, wolves hunting moose, owls hunting 

mice, or shrews hunting worms and insects. 

Predation can also occur as parasitism, 

cannibalism, herbivory. 

From the above exposition, one can say 

that no simple relationship exists between a 

community and its individual species. As was 

noted by Berryman (1992), the dynamic 

relationship between predators and their prey has 

long been and will continue to be one of the 

dominant themes in both ecology and  
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mathematical ecology due to its universal 

existence and importance and depending on 

their specific settings of applications, predators 

and preys can take the forms of resource-

consumer, plant-herbivore, parasite-host, tumor 

cells (virus)-immune system, susceptible-

infectious interactions, etc. Since the complex 

dynamics for interactive species are common 

in the real world, many researchers have 

investigated the processes that affect the 

dynamics of predator-prey relation and wanted 

to know what models can best represent 

species interactions. 

The Lotka-Volterra model is the 

simplest model of predator-prey interactions. It 

is a pair of differential equations describing the 

interaction between a predator and a prey. 

Since the development of the first Predator-

Prey Model called the Lotka-Volterra model, 

many researchers have worked on extending 

and modifying the model to include other 

factors which could also come to play in the 

course of the interaction between a predator 

and a prey. Aside from the different variations 

of the first Predator-Prey Model, various 

researchers have also attempted to apply the 

predator-prey equations and its numerous 

variations to different systems either for the 

purpose of estimating the quantitative behavior 

of the system or comparing the quantitative 

results from the model to observational data. 

The various applications of the Predator-Prey 

Model ranges from biological systems, 

ecological systems, fishery, economics, mobile 

operating systems, etc. 

Based on available literatures, it is 

observed that the effect of disturbances in the 

ecological system of predator-prey interaction 

has not been modeled and analyzed. This study 

model this factor in an ecosystem in which two 

species (cat and rat) interact. 

Assumptions/conditions for existence of both 

species shows that, since human beings predate 

on the rats, it will affect the mean number of 

the prey and predator because that action 

reduces the quantity of food meant for the 

predator, this could make them starve to death. 

The concept of the generalized Predator-Prey 

Models that has been stated is extended for the 

model. The model like other Predator-Prey 

Models deals with general loss-win interactions 

and hence may have applications outside of the 

ecosystem. 
 

 

METHODS 

The basic idea of the model 

Here, we briefly recall the basic idea of the 

Lotka-Volterra model which will be the guide for 

the following sections; 

 

i) The predator species is totally dependent on the 

prey species as its only food supply. 

ii) The prey species has an unlimited food supply. 

iii) There is no threat to the prey’s growth other 

than the specific predator. 

iv) The rate at which the predator encounters the 

prey is jointly proportional to the sizes of the two 

populations. 

v) A fixed proportion of encounter leads to the 

death of preys. 

 

These assumptions lead to the Lotka-Volterra 

Predator-Prey Model: 
 
  

  
=a1 R(t) ‒ a2 R(t)C(t) 

 
  

  
 = ‒ b1C(t) + b2 R(t)C(t) 

 

Where a1 = natural growth rate of the rat, a2 = 

carrying capacity of the rat, b1 = natural growth 

rate of the cat, b2 = carrying capacity of the cat. 

Given the certain dynamics of the system under 

study, we also have the following assumptions: 

 

i) C(r) denotes the predator response function. 

The models C(r) of functional response are 

assumed to be continuously differentiable on [0, 

∞] and satisfy C(0) = 0, C
1
(r) ˃ 0 and

        ( )       
 

Note: A functional response in ecology is the 

intake rate of a consumer as a function of food 

density. It is associated with the numerical 

response, which is the reproduction rate of a 

consumer as a function of food density. 

Following C. S. Holling, functional responses are 

generally classified into three types, which are 

called Holling's type I, II, and III. 

 

i) The Holling type-III function satisfies the 

assumptions made and will be used for the model. 
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ii) We will assume that the primary loss of rats 

is due to predation by the cats and human 

beings. 

 

Mathematically, this is given by a negative 

term  a2 R(t)C(t) and  a3R(t). Here, a3 is the 

total number of prey, n minus the number 

predated by human being, and m, that is, (n–

m). 

Combining these terms, we have the growth 

model for the rat population: 

 

)()()()()( 21 tRmntCtRatRa
dt

dR


 
 

)()()()( 321 tRatCtRatRa
dt

dR


 
- - - - - - 

This is the prey’s Equation (a) 

 

For the predator, the growth of the Cat 

population can be expressed as b2 R(t)C(t). The 

human predation is negative on the Cat because 

it reduces the quantity of food meant for the 

predator, that is, (n-m)C(t)= b3C(t), where b3 

represents the total number of rats, n  minus the 

number predated by human beings, m. The loss 

of Cat is presumed to be a type of reverse 

growth. Thus, in the absence of rats, the cat 

population declines in population to their own 

population which is expressed by the negative 

modeling term as  b1C(t). 

The growth model for the Cat population 

gives: 

 

)()()()()( 21 tCmntCtRbtCb
dt

dC
  

 

)()()()( 321 tCbtCtRbtCb
dt

dC
  - - - - - - 

 

This is the predator’s Equation (b) 

 

The model ignores the role of climate variation 

and the interactions of other species. Other 

significant factors ignored are the ages of the 

animals and the spatial distribution. The two 

differential equations above are intertwined 

into a system of differential equations with 

each growth model depending on the unknown 

variable (population) of the other. 

The model 

From the predator and prey’s equation above, let 

 

a1 = ur (natural growth rate of the rat) 

 

a2 =
m

r
 (carrying capacity of the rat) 

 

a3 = b3= qEr (the predating coefficient/total effort 

on predating on the rat population) 

 

b1= vc (natural growth rate of the cat) 

 

b2 = 
n

c
 (carrying capacity of the cat) 

 

Thus, the rate of change of rats population with 

respect to time, 

 

qEr
rp

ckr

m

r
ur

dt

dr














2

2

1       (i) 

 

Similarly, the rate of change of cats population 

with respect to time, 

 

dc
rp

cekr

n

c
vc

dt

dc














2

2

1      (ii) 

 

Where 
2

2

rp

kr


 is the predator’s functional 

response 

 

k and  p are positive constants with k being the 

maximum growth rate of the species and  p 

the saturation constant; e is the conversion rate; d 

the death rate of the cat; r and c stands for rat and 

cat respectively. 

In summary, incorporating disturbances and the 

Holling type III functional response, the 

mathematical model of the predator-prey system 

becomes: 

 

qEr
rp

ckr

m

r
ur

dt

dr














2

2

1                  (1) 

 

dc
rp

cekr

n

c
vc

dt

dc














2

2

1                 (2) 
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We write the Equations 1 and 2 in their non-

dimensionalized form in other to reduce the 

number of parameters. From Equation (1) 

when we set 

 

p

r
r  ,prr    rdpdr 

, 

 

we have 

 

pqEr
prp

pcrk

m

pr
pru

dt

rdp




















22

2
2

1

            

                                                                      

(3)

  

setting 

 

pu

tm
t

m

put
t   , 

pu

tmd
dt  ,

 
 

we have 

 

prqE
rpp

rkpc

m

pr
pru

pu

tmd

rdp




















2

2

1 ,                       

                                                                      (4) 

 

 
rpqE

rp

rkpc

m

rp
rpu

tmd

rdpu




















2

22

1
1 .       

                                                                       (5)

  

Set     ,pm
p

m
 

 
 

  pu

prqE

rpu

rkc

p

pr

pu

pru

tdp

rdp




















2

2

1
1


                                

                                                                       (6) 

 

  u

rqE

rpu

rkcr
r

td

rd 


 


















2

2

1
1                            

                                                                     (7) 

  pu

rmqE

rpu

rkmcr
r

td

rd





22

22

1


     (8) 

 

  pu

rmqE

rup

rkmc
rr

td

rd





2

2
2

1
                 (9) 

 

 
 

rqE
r

rc
rr

td

rd



 




2

1
              (10) 

 

where 

 

,
pu

km
  

pu

m


 
 

Removing bars, we have 

 

 
 

qEr
r

cr
rr

dt

dr



 




2

2

1
              (11) 

 

Similarly, from Equation (2) above, setting 
 

,pcc
p

c
c   cdpdc  , 

 

we have 
 

cd
rpp

crekp

n

pc
cv

dt

cd




















2

2

1    (12) 

 

 Setting 

 

,
pv

nt
t

n

pvt
t   

pv

tnd
dt  , 

 

we have 
 

  pv

cnd

rpv

rcnek
c

p

cn

td

cd





2

2
2

1
  (13) 

 

Set 

 

,pn
p

n
   
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so that 

 

 
 

c
r

cr
cc

td

cd



 




2

2

1
           (14) 

 

Where 

 

pv

enk
 , 

pv

dn


 
 

Removing bars, we have 

 

 
 

c
r

cr
cc

dt

dc



 




2

2

1
.           (15) 

 

Adding noise and periodic force terms, the 

model which is Equation (11) and (15) 

becomes 

 

 
 

rDtAqEr
r

cr
rr

t

r 2

12

2

sin
1











          

                                                                     (16) 

 

 
 

c
r

cr
cc

t

c



 







2

2

1
   tAsin cD 2

2     

                                                                     (17) 

 

Where the non-negative constants D1 and D2 

are respectively prey and predator diffusion 

coefficients. 
2

2

2

2
2

yx 







  is the Laplacian 

operator in two–dimensional space. 

The periodic force is assumed to be 

sinusoidal with amplitude A and frequency   

in equation (16). In equation (17), the periodic 

force and noise is also sinusoidal with 

amplitude denoted as  ̅, frequency   and 

phase shift  . This periodic force is considered 

to be positive reason being that the toxins 

produced by different populations have 

significant roles in shaping the dynamical 

behavior of ecosystems. 

In this model, we called the noise in Equation 

(16) White noise because it has equal intensity 

at different frequencies and Colored noise is 

found in Equation (17) because it is closer to 

physical reality and have been used in describing 

ecological evolution. The noise in Equation (17) 

will have an influence over that of Equation (16). 

 

Existence of Equilibria 

From (16) and (17) above, that is, the Predator-

Prey Model, set 

 

0




t

R
, 0




t

C
 and 021  DD  

 

resulting in a system of non-linear algebraic 

equations to solve. 

Putting Re and Ce as the equilibrium solutions 

for the Rat and Cat populations respectively, the 

system of algebraic equations to solve from 

Equation (16) then becomes: 

 

0sin
1

2

2

2



 tAqE

C
R R

R

R
R e

e

ee

ee 




     

                                                                         

(18) 

 

Ignoring the H.O.T of Re and setting Ce = 0, 

Equation (18) gives 

 

0sin  tAqERR ee  .    (19) 

 

 qE

tA
Re








sin
     (20) 

 

Implying that we have possible equilibria at Ce = 

0 or 
 qE

tA
Re








sin  

 

Similarly, from the Equation 17 above, we 

have; 

 

CeeC
2


 

  0sin
1

2

2







tAC
C

e

e

ee

R

R        

                                                                         (21) 

 

Ignoring the H.O.T. of Ce and setting Re = 0, 

Equation (21) gives 

 

     tACe sin .    (22) 

 

 
 








tA
Ce

sin .                           (23) 
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Implying that we have possible equilibria at Re 

= 0 or 
 

 








tA
Ce

sin
 

 

From the above, the simultaneous solution of 

the Equation (16) and (17) shows that when Re 

= 0, then Ce = 0 which gives rise to the trivial 

solution (extinction of both species), that is, 

 

   0,0, ee CR
.            (24) 

 

The other equilibrium solution which denotes 

the co-existence of both species is given by: 

 

 
 

 
  




























 tA

qE

tA
CR ee

sin
,

sin
, .         

                                                                     (25) 

 

Note here that, the equilibria do not help 

explain the oscillatory behavior of the data 

reflected by the Rat and Cat. So we need 

information about the stability of these equilibria 

before we can demonstrate that this is an 

appropriate model. Hence we perform a linear 

analysis. 

 

Linear/Stability analysis of the model 

In solving for the stability, we perform a 

linearization using partial derivatives. Thus, the 

Jacobian matrix of the Predator – Prey Model 

becomes: 

 

 



































C

V

R

V
C

U

R

U

CRJ ,  

 

Let tAqER
R

CR
RRU 


 sin

1 2

2
2 




 
 

 


 


 tAC
R

CR
CCV sin

1 2

2
2

 

 

 

  
  

  

 


















































C

R

R
C

R

CRRCR

qE
RR

CRRCR
R

CRJ

R

R
R










 

2

2

22

32

2

2

22

32

1
2

1

221

111

221
2

,

 

 

When evaluated at the steady state of (0, 0) the Jacobian matrix J is 

 

  












































0

0

10

01

0

0
0,0

qEqE
J

 
 

The Eigen values are: 

 

qE 1      and          2  
 

For          
 

Hence, the system is unstable. 

For the second solution of equilibrium point: 
 

 




























 tA

qE

tA
J

sin
,

sin

 

 


















































2

2

2

3

2

2

2

3

1
2

1

22
1

,
1

22
2

R

R
C

R

CRRC
R

R
qE

R

CRRC
R

 










10

01


 

 

Put 

 

 
,

1 2R

R
A


        

 2

2

1 R

R
B


  

 

So that 

 

  

















BCBRCAC

BqEBRCACR
CRJ

222

,222
,

 

Where 
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,
sin
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tA
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





   

 
C

tA
K 








sin

 
 

 
 

  






























0

0

2,2

,22
,

BKBPAK

BBPAKP
CRJ

 

The Eigen values are 

 

     BKBPAKP 2221

 and  BPABK   22
 

 

For          ;  

 

Hence, the system is unstable. 

 

 

Simulation of the Model 
 

From Figures 1 to 2, the values of the parameters 

are: ,192.0  ,2.0  ,066.0 ,1 AA

,
12

2
  ,1,2  MQ ,1.0,125.0,1  Eq

,102,05.0,05.0,05.0  rt
205.005.0 r (ignoring the H.O.T of 2rr 

). 
4


  (for increasing and decreasing phase 

shift). 

 

 

 
 

Figure 1. The Predator (Cat) and Prey (Rat) Population against Time with disturbances and increasing phase shift. 

 

 

DISCUSSION 

 

The outcome of the simulation showed that 

disturbances can cause oscillatory wave 

pattern. The model when initiated with 

different initial values lead to different curves 

of typical time series of predator C(t) and of 

prey R(t). As a result, solutions show oscillations 

with a frequency 
12

2
  . We can say here that 

the plausible reason for the origin of the 

oscillations is delayed predator-prey interactions 

and the emergence of disturbance. Nevertheless,  
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Figure 2. The Predator (Cat) and Prey (Rat) Population against Time with disturbances (Human) but without noise and periodic 
force. 

 

 

as the intensity of the disturbances are 

increased, the fluctuations become more 

apparent. It is understood that the frequency of 

the waves and resounding pattern arises when 

the disturbances and external periodic forces 

are present in the system (Equations 16 and 

17). The results depict a regular frequency 

pattern which is a general characteristic of 

Predator-Prey Models. The figure shows the 

population of each species with time; but in 

contrast, both reveal that as the predator eats up 

the prey and its population density reduces at 

some time interval, the predator’s population 

starts increasing at some time interval; also, 

when there is no much prey for the predator to 

eat its number starts declining while the prey’s 

population density starts to climb and this 

happening is in a continuous process. The 

graph of the prey’s population against time 

exhibits a higher, stronger and clearer 

sinusoidal wave pattern than that of the 

predator’s population against time. 

The disturbances have an extensive effect in 

the model in that it supports the modulating 

nature of the species population especially that of 

the prey. Its presence in the system decreases the 

population density of the prey even in the absence 

of the predator or when the predator has not been 

introduced into the competition or system. 

Evidently, it is the presence of the disturbances 

that makes Figure 1 show a spiraling rise and fall 

nature. 
 

 

Conclusion 
 

This work has modified the Lotka-Volterra 

Predator-Prey Model by incorporating variables 

in the dynamics of the rat and cat population. 

Through simulation, this work has showed that 

disturbances in human form and noise when 

induced into the predator-prey system during 

competition, affects the interaction of both 

species. It can lead to the death of the prey 

causing a reduction in its population. The 

disturbances (especially noise) can also 

quarantine the prey in its hideout, making the 

predator to starve to death. The effect of the 

disturbances on the population of both species 

does not occur at the same time. At the time the  
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effect is causing a reduction in the population 

of the prey specie, the predator population is 

increasing. Similarly, at the time the effect of 

the disturbances is causing a reduction in the 

population of the predator, the population of 

the prey is rising. The modified model is 

suitable for studying the dynamics of 

interspecific interaction between predators and 

their prey with disturbances. 
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