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Abstract 

This paper is focused on the study of Bernstein polynomial and 

the use of it to solve fractional integro differential equations 

(FIDEs) with caputo derivative. Bernstein polynomial is used to 

reduce the equation to a system of linear equations from which 

the approximate solution was obtained. It was observed that the 

deviation between the approximate solution using Bernstein 

polynomial and the exact solution is negligible. Graph was 

presented to show the accuracy of the method. 
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Introduction 

An integro differential equation is an 

equation that involves both integrals and 

derivatives of a function (Losif, 2017). 

According to Rama (2007), the general first 

order of linear integro differential equation 

is of the form; 

 
𝑑

𝑑𝑥
𝑢(𝑥) + ∫ 𝑓(𝑡, 𝑢(𝑡))𝑑𝑡 = 𝑔(𝑥, 𝑢(𝑥))

𝑥

𝑥0
,                                                                 (1) 

  u(𝑥0) = 𝑢0. 

According to Awawdeh et al. (2011), 

fractional calculus was discovered by 

Leibniz in the year 1695, few years after he 

discovered classical calculus but later 

forgotten due to the complexity of the 

formula. Nanware et al. (2021) recorded 

that fractional differential equation when 

compared to integer order differential 

equation is more advantageous in the sense 

that it serves as a better  model for some 

natural physical process and system 

processes because the fractional order 

differential operators are non-local 

operators. Nanware et al. (2021) also said 

that the concept of fractional calculus can 

be applied in diverse and widespread fields 

of engineering and sciences such as 

viscoelasticity, electro-chemistry, fluid 

mechanics, electro-magnetics and signal 

processing etc. The role played by 

fractional integro differential equation 

cannot be over-emphasized as it models 

real world problems such as the modelling 

of earth quakes, reducing the spread of 
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viruses, control the memory behaviour of 

electric sockets and many others.Since 

most fractional integro differential equation 

cannot be solved analytically, much 

attention has been devoted to search for 

approximate and numerical techniques for 

the solution of fractional integro differential 

equations (oyedepo et.al., 2016). Recently 

many methods have been develop by 

researchers for providing approximate 

solutions of fractional integro differential 

equations. Osama et al., (2012) employed 

laguire polynomials as basis function for 

the solution of fractional solving fredholm 

integro differential equations. While 

Aysegul et al.. (2019) employed Bernstein 

polynomials as basis function to 

approximate the the solution of fractional 

integro differential equations. Dilkel et.al., 

(2018) applied collocation technique for 

solving fractional integro differential 

technique using different basis function. 

Mahdy et.al, (2013) applied sumudu 

transform method and hermite spectral 

collocation method for solving fractional 

integro differential equations. Author 

Mohammed et.al, (2014) introduced 

approximate solutions of volterra fredholm 

integro differential equation of fractional 

order. Mahdy et.al, (2016) used least square 

method for the solution of fractional integro 

differential equation. Mohammed et.al, 

(2014) introduced numerical solution of 

fractional singular integro differential 

equations by using Taylor series expansion 

and Galerkin method and a fast numerical 

algorithm based on the second kind of 

chebychev polynomials. (Seria et.al, 2014) 

applied numerical solution of fredholm-

voltera fractional integro differential 

equations. Oyedepo et.al, (2021) employed 

Bernstein modified homotopy perturbation 

method for the solution of voltera fractional 

integro differential equation with non local 

boundary condition. In other to ascertain a 

better method of solving fractional integro 

differential equations, the Bernstein 

polynomial method and homotopy analysis 

transform method are compared. The 

homotopy analysis method, introduced first 

by Liao, is a general approximate analytic 

approach used to obtain series solutions off 

nonlinear equations of various types, 

including algebraic equations, ordinary 

differential equations, partial differential 

equations, differential-integral 

equations,differential-difference equations 

and and a couple of similar equations. This 

method is valid no matter whether a non 

linear problem contains small/large 

physical parameters or not, which is 

essentially required in perturbation 

techniques. More importantly, unlike all 

perturbation and traditional non-

perturbation methods, the homotopy 

analysis method provides us with both the 

freedom to choose proper base functions for 

approximating a nonlinear problem and a 

sample way to ensure the convergence of 

the solution series. The use of Berstein 

polynomials to solve fractional integro-

differential equations involves using 

Bernstein polynomial as basis function to 

get the approximate solution of the 

equation. 

The general form of the class of problem 

considered in this work is 

𝐷∝𝑢(𝑥) = 𝑢(𝑥)𝑝(𝑥) + 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑥)𝑑𝑡,     0 ≤ 𝑥. 𝑡 ≤ 1.
𝑥

0
                                                           

(2) 

For         𝑥 ∈ [0,1]   with the initial conditions 
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𝑗(𝑖) = 𝛿𝑖                𝑖 = 0,1,2, … , 𝑛 − 1,     𝑛 − 1 <∝≤ 𝑛, 𝑛 ∈ 𝑁. 

Where 𝑓 ∈ 𝐿2([0,1]), 𝑢 ∈ 𝐿2([0,1]), 𝑘 ∈ 𝐿2([0,1]2) are known functions, y(t) is the unknown 

function. 

Where 𝐷∝ indicates the  ∝ 𝑡ℎ caputo 

fractional derivative of u(x); p(x); f(x). 

K(x,t) are given smooth functions 𝛿𝑗 are 

real constant, 𝑥 𝑎𝑛𝑑 𝑡 are real variables 

varying [0,1] and u(x) is the unknown 

function to be determined. 

In this work Bernstein polynomial is used 

to solve fractional integro differential 

equations by reducing the fractional integro 

differential equation to a system of linear 

equations. The approximate solution gotten 

from this use of Bernstein polynomial is 

then compare to the exact solution to know 

how much it deviates from the exact 

solution. Graphs are used to illustrate the 

comparison between the approximate 

solution gotten from the method and the 

exact solution. 

Definition of basic terms 

Gamma function 

Gamma function is defined as  

r(x)= ∫ 𝑥𝑧−1𝑒−1∞

0
𝑑𝑥                                                                                                                        

(3) 

or 

r(z+1) = ∫ 𝑥𝑧∞

0
. 𝑒−𝑡𝑑𝑥.                                                                                                                  

(4) 

This integral converges when the real part 

of z is positive (Re(z)≤ 0).                                           

Where z is a positive integer  

r(z)=(z-1)!                                                                                                                                 

(5) 

the formula above is use to find the value of 

the gamma function for any real value of z. 

Gamma function according to ustaoglu 

(2014) has two characteristics first it is 

definitely an increasing function with 

respect z and secondly when z is a natural 

number 𝜏(𝑧 + 1) = 𝑧! 

 

Beta Function 

A beta function is a kind of function which 

we classify as the first kind of Euler’s 

integrals. The function has real number 

domains. We express this function as 

B(x,y) where x and y are real and greater 

than 0. The beta function is also symmetric, 

which means B(x,y)= B(y,x).The notation 

use for beta function is 𝛽. 

Mathematically Beta function is defined as  

B(x,y)=∫ (1 − 𝑢)𝑥−1𝑢𝑥−1𝑑𝑢 =
Ӷ(𝑥)Ӷ(𝑦)

Ӷ(𝑥+𝑦)

1

0
= 𝐵(𝑥, 𝑦), 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ 𝑅.                                                (6) 

Caputo Fractional Derivative   

The caputo fractional derivative is defined as  
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𝐷∝(𝑥) =
1

Ӷ(𝑛−𝑥)
∫ (𝑥 − 𝑠)𝑛−∝−1𝑓𝑚(𝑠)𝑑(𝑠)

𝑥

0
.                                                                          (7) 

Where m is a positive integer with the property that 

𝑛 − 1 < ∝ < 𝑛. 

For instance, if 0 <∝ < 1 the caputo fractional derivative is 

𝐷∝𝑓(𝑥) =  
1

Ӷ(1 − 𝑥)
∫ (𝑥 − 𝑠)−∝𝑓1(𝑠)𝑑𝑠.

𝑥

𝑜

 

According to oyedepo et al (2016) some of the properties of caputo fractional derivative are, 

1. 𝐼∝𝐼𝑣𝑓 =  𝐼𝑎+𝑣𝑓, 𝑎, 𝑣 > 0, 𝑓 ∈ (Ц, Ц) > 0. 

2. 𝐼∝𝑥𝑦 =
Ӷ(⋋+1)

Ӷ(𝑎+𝑦+1)
𝑥𝑎+𝑦, 𝑎 > 0, 𝑦 > −1, 𝑥 > 0. 

3. 𝐼∝𝐷∝𝑓(𝑥) = 𝐹(𝑥) −  ∑ 𝑓𝑘𝑛−1
𝑘=0 (0)

𝑥𝑘

𝑘!
𝑥 > 0, 𝑛 − 1 <∝≤ 𝑛. 

4. 𝐷∝𝐼∝𝑓(𝑥) = 𝑓(𝑥) 𝑥 > 0, 𝑛 − 1 < 𝑎 ≤ 𝑛. 

5. 𝐷∝𝐶 = 0, 𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Bernstein Basis Polynomials 

The n+1 Bernstein basis polynomials of degree n are defined as 

𝐵𝑣,𝑛(𝑥) =  (
𝑛
𝑣

) 𝑥𝑣(1 − 𝑥)𝑛−𝑣,       𝑉 = 0,1, … , 𝑛.                                                                                  (8)                                       

𝑤ℎ𝑒𝑟𝑒 (
𝑛
𝑣

)  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

i.e   (
𝑛
𝑣

) =
𝑛!

𝑣!(𝑛−1)!
                                                                                                                   (9) 

for example 

𝑏2,5(𝑥) = (
5
2

) 𝑥2(1 − 𝑥)3 = 10𝑥2(1 − 𝑥)3. 

The first few Bernstein basis polynomials for blending 1, 2 ,3 0r 4 values together are 

𝑏0,0(𝑥) = 1, 

𝑏0,1(𝑥) = 1 − 𝑥,                  𝑏1,1(𝑥) = 𝑥, 

𝑏0,2(𝑥) = (1 − 𝑥)2𝑏1,2(𝑥) = 2𝑥(1 − 𝑥)𝑏2,2(𝑥) =  𝑥2, 

𝑏0,3(𝑥) =  (1 − 𝑥)3,          𝑏1,3(𝑥) = 3𝑥(1 − 𝑥)2 𝑏2,3(𝑥) = 3𝑥2(1 − 𝑥). 

The Bernstein basis polynomial of degree n 

form a basis for the vector space 𝛱𝑛 

of polynomials of degree of most n with real 

coefficients. 

 A linear combination of Bernstein basis 

polynomials  

𝐵𝑛(𝑥) =  ∑ 𝐵𝑣
𝑛
𝑣=0 𝑏𝑣𝑛(𝑥),                                                                                                       

(10) 
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is called a Bernstein polynomial or 

polynomial in Bernstein form of degree n. 

The coefficient 𝐵𝑣 is called Bernstein 

coefficients or Berzier coefficients. 

Absolute Error 

Absolute error in this work is defined as 

Absolute error = ׀𝑢(𝑥) −  𝑢𝑚(𝑥)0 ;׀≤ 𝑥 ≤

1.                                                                       (11) 

Where U(x) is the exact solution and 𝑢𝑚(𝑥) 

is the approximate solution 

And 𝑢𝑚(𝑥) is a Bernstein polynomial of 

degree m, where 𝑎𝑗, 𝑗 = 0, 1, 2, … 

Illustration of use of Bernstein 

Polynomials. 

In 2020, Holambe et.al. used Bernstein 

polynomial as basis function to solve 

fractional integrate differential equation of 

the form; 

𝐷∗
∝𝑢(𝑥) = 𝑓(𝑥) +

∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,      𝑢(𝑎) = 𝑢𝑎, 0 < 𝑎 ≤
𝑏

𝑎

1.                                                              (12) 

Where 𝐷∗
∝𝑢(𝑥)indicates the ∝𝑡ℎ caputo 

fractional derivative 

of

 𝑢(𝑥).  𝑓(𝑥), 𝑘(𝑥, 𝑡) 𝑎𝑟𝑒 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠. 𝑥 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 [0,1] 

. They began the method by taking the 

fractional integration of both sides of the 

equation (12) to get; 

𝑢(𝑥) = 𝑢(0) + 1∝𝑓(𝑥) +

1∝ (∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
).                                                                           

(13) 

To determine the approximate solution of 

(12), they used the Bernstein polynomials 

basis on [𝑎, 𝑏] as 

𝑢(𝑥) =  ∑ 𝑎𝑖𝐵𝑖,𝑛(𝑥)𝑛
𝑖=0 .                                                                                                               

(14) 

Where 𝑎𝑖(𝑖 = 0,1,2, … , 𝑛) are unknown 

constants to be determined. 

Substituting equation (14) into equation 

(13) , they obtained: 

∑ 𝑎𝑖𝐵𝑖,𝑛
𝑛
𝑖=0 (𝑥) = 𝑢(0) + 1∝𝑓(𝑥) + 1∝ (∫ 𝑘(𝑥, 𝑡)

𝑏

𝑎
∑ 𝑎𝑖

𝑛
𝑖=0 𝐵𝑖,𝑛(𝑡)𝑑𝑡). 

Hence 

∑ 𝑎𝑖𝐵𝑖,𝑛(𝑥) − 1∝ (∑ 𝑎𝑖

𝑛

𝑖=0
𝜑(𝑥)) = 𝑢(0) + 1∝𝑓(𝑥),

𝑛

𝑖=𝑜
 

Where 𝜑(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝐵𝑖,𝑛
𝑏

𝑎
(𝑡)𝑑𝑡, 

Substitute the values of  𝐵𝑖,𝑛(𝑥), 𝐵𝑖,𝑛(𝑡) and simplifyingthe integration. 

∑ 𝑎𝑖
𝑛
𝑖=𝑜 [𝐵𝑖,𝑛(𝑥) − 1∝𝜑(𝑥)] = 𝑢(0) + 1∝𝑓(𝑥),                                                                                  (15) 

Using the caputo integration and simplifying. Now, we put 𝑥 = 𝑥𝑚, m=0, 1… n into equation 

(15), 𝑥𝑚′𝑠 are being chosen as suitable distinct points in (a,b), putting x=xm we obtain the 

linear system; 
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∑ 𝑎𝑖
𝑛
𝑖=0 𝑎𝑖,𝑗 = 𝛽𝑗, 𝑗 = 0,1, … , 𝑛.                                                                                                     (16) 

Where 𝑎𝑖,𝑗 = 𝐵𝑖,𝑛(𝑥𝑗)-1∝𝜑(𝑥) and Bj= u(0) +1∝𝑓(𝑥𝑗). Solve the linear system of equations 

by standard methods for the unknown a’s. Substituting ai(i=0,1,…n) in equation (16) to obtain 

the approximate solution of u(x). 

Example 1; 

The equation to be considered is the fractional integro differential equation 

𝐷∝𝑦(𝑥) =
8

3Γ(0.5)
𝑥1.5 − 𝑥2 −

1

3
𝑥3 + ∫ 𝑦(𝑡)𝑑𝑡

1

0
 .                                                                   (17) 

The exact solution of equation (17) is 𝑥2. Using Bernstein polynomial to solve equation (17), 

we have the following:  

𝐷∝𝑦(𝑥) =
8

3Γ(0.5)
𝑥1.5 − 𝑥2 −

1

3
𝑥3 + ∫ 𝑦(𝑡)𝑑𝑡

1

0

. 

Taking the fractional integration of both sides of equation (17) we get  

𝑦(𝑥) = 𝐼∝ (
8

3Γ(0.5)
𝑥1.5 − 𝑥2 −

1

3
𝑥3) + 𝐼∝ (∫ 𝑦(𝑡)

1

0
) 𝑑𝑡 .                                                                       (18) 

To determine the approximate solution of equation (18) we get 

∑ 𝑎𝑖𝑏𝑖,3(𝑥) =3
𝑖=0 𝐼∝ (

8

3Γ(0.5)
𝑥1.5 − 𝑥2 −

1

3
𝑥3) + 𝐼∝ (∫ ∑ 𝑎𝑖𝑏𝑖,3(𝑡)3

𝑖=0
1

0
) 𝑑𝑡,                                                    

(19)         

so, 

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼∝ [𝑎0 ∫ (1 − 𝑡)3𝑑𝑡 + 3𝑎1𝑡 ∫ (1 −
1

0

1

0

𝑡)2𝑑𝑡 + 3𝑎3𝑡2 ∫ (1 − 𝑡)𝑑𝑡 + 𝑎3
1

0
∫ 𝑡3𝑑𝑡

1

0
] = 𝐼∝ (

8

3Γ(0.5)
𝑥1.5 − 𝑥2 −

1

3
𝑥3),                  (20) 

evaluating the right hand side of equation (20), we have 

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼∝ [𝑎0 ∫ (1 − 𝑥)31

0
𝑑𝑡 + 3𝑎1 ∫ (𝑡2 +

1

0

𝑡3 − 2𝑡2)𝑑𝑡 + 3𝑎2 ∫ (𝑡2 − 𝑡3)𝑑𝑡 + 𝑎3 ∫ 𝑡3𝑑𝑡
1

0

1

0
] =

8

3Γ(0,5)
×

Γ(2.5)

Γ(2.5+∝)
𝑥∝+1.5 −

Γ(3)

Γ(3+∝)
𝑥∝+2 −

1

3
×

Γ(4)

Γ(4+∝)
𝑥∝+3.                                                                                                             (21) 

Simplifying the RHS further we have 

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼∝ [𝑎0 ∫ (1 − 𝑥)31

0
𝑑𝑡 + 3𝑎1 ∫ (𝑡2 +

1

0

𝑡3 − 2𝑡2)𝑑𝑡 + 3𝑎2 ∫ (𝑡2 − 𝑡3)𝑑𝑡 + 𝑎3 ∫ 𝑡3𝑑𝑡
1

0

1

0
] = 2

𝑥∝+1.5

Γ(2.5+∝)
− 2

𝑥∝+2

Γ(3+∝)
− 2

𝑥∝+3

Γ(4+∝)
(22) 
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𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼∝𝑎0{(1 − 𝑡)3 + 3(1 − 𝑡)2 + 6(1 =

𝑡) + 6}0
1 + 3𝑎1{(𝑡 + 𝑡2 − 2𝑡3) + (1 + 2𝑡2 − 4𝑡) + (6𝑡 − 4) + 6}0

1 + 3𝑎2{(𝑡2 − 𝑡3) +

(2𝑡 − 3𝑡2) + (𝑡 − 6𝑡) − 6}0
1 + 𝑎3{𝑡3 + 3𝑡2 + 6𝑡 − 6}0

1 = 2
𝑥∝+1.5

Γ(2.5+∝)
− 2

𝑥∝+2

Γ(3+∝)
− 2

𝑥∝+3

Γ(4+∝)
 , 

                                                                                                                                              (23) 

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − [𝑎0(−10]
𝑥∝

Γ(1+∝)
+ 𝑎1(−3)

𝑥∝

Γ(1+∝)
+

𝑎2(−18)
𝑥∝

Γ(1+∝)
+ 𝑎3(3)

𝑥∝

Γ(1+∝)
= 2

𝑥∝+1.5

Γ(2.5+∝)
− 2

𝑥∝+2

Γ(3+∝)
− 2

𝑥∝+3

Γ(4+∝)
  ,                                                            

(24) 

 

𝑎0 [(1 − 𝑥)3 + 10
𝑥∝

Γ(1+∝)
] + 𝑎1 [3𝑥(1 − 𝑥)2 + 3

𝑥∝

Γ(1+∝)
]+𝑎2 [3𝑥2(1 − 𝑥) + 18

𝑥∝

Γ(1+∝)
] +

𝑎3 [𝑥3 − 3
𝑥∝

Γ(1+∝)
] = 2

𝑥∝+1.5

Γ(2.5+∝)
− 2

𝑥∝+2

Γ(3+∝)
− 2

𝑥∝+3

Γ(4+∝)
 ,                                                                                          

(25) 

substitute  ∝= 0.5 into equation (25) 

𝑎0 [(1 − 𝑥)3 + 10
𝑥0.5

Γ(
3

2
)
] + 𝑎1 [3𝑥(1 − 𝑥)2 + 3

𝑥0.5

Γ(
3

2
)
]+𝑎2 [3𝑥2(1 − 𝑥) + 18

𝑥0.5

Γ(
3

2
)
] + 𝑎3 [𝑥3 −

3
𝑥0.5

Γ(
3

2
)
] = 2

𝑥25

Γ(23)
− 2

𝑥2.52

Γ(
7

2
)

− 2
𝑥3.5

Γ(
9

2
)
 . 

Then substituting x = 0.1, 0.2, 0.3 and 0.4 respectively, we get a linear system of equations, 

                             4.287𝑎0+  1.3134𝑎1 + 6.4494𝑎2 − 1.0694𝑎3 = 0.0080 

5.558𝑎0 + 1.8978𝑎1 + 9.1788𝑎2 − 1.5058𝑎3 = 0.0286 

6,552𝑎0 + 2,2947𝑎1 + 11.3112𝑎2 − 1.8267𝑎3 = 0.0576 

7.352𝑎0 + 2.5728𝑎1 + 13.1328𝑎2 − 2.0768𝑎3 = 0.092 

Therefore, using maple 20 to solve the above system of equation we get 

𝑎0 =  −0.00918053195 

𝑎1 =  0.02356660755 

𝑎3  =   0.12100236583 

𝑎3 = 0.71440817286 

Thus, the approximate solution of equation (17) when ∝ = 0.5 becomes 

𝑦(𝑥) =  −0.00918(1 − 𝑥)3 + 0.0236(3𝑥)(1 − 𝑥)2 + 0.1210(3𝑥2)(1 − 𝑥) + 0.7144(𝑥3) 
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Table 1 showing the exact and approximate solution of equation (17) using Bernstein 

polynomial method 

X Exact solution Approximate solution of 

Bernstein polynomials method 

0.1 0.01 0.0030167 

0.2 0.04 0.01938056 

0.3 0.09 0.0494037 

0.4 0.16 0.0887696 

0.5 0.25 0.1423675 

0.6 0.36 0.2127852 

0.7 0.49 0.3026105 

0.8 0.64 0.4144312 

0.9 0.81 0.5508351 

 

 

Figure 1 showing the graph of approximate solution from the use of Bernstein polynomial and 

exact solution. 
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Table 2 showing the absolute error from the use of Bernsteim polynomial 

X EXACT SOLUTION APPROXIMATE SOLUTION  

FROM THE USE OF BERNSYEIN  

POLYNOMIAL 

ABSOLUTE ERROR 

FROM THE USE OF 

BERNSTEIN 

POLYNOMIAL 

0.1 0.01 
0.0030167 

0.0069833 

0.2 0.04 
0.01938056 

0.02061944 

0.3 0.09 
0.0494037 

0.0403963 

0.4 0.16 
0.0887696 

0.0712304 

0.5 0.25 
0.1423675 

0.1076325 

0.6 0.36 
0.2127852 

0.1472148 

0.7 0.49 
0.3026105 

0.1873895 

0.8 0.64 
0.4144312 

0.2255688 

0.9 0.81 
0.5508351 

0.2591649 

  Example 2;    

Consider the fractional integro-differential equation 

𝐷∗
𝛼𝑦(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑒3𝑥 + ∫ 𝑥𝑒𝑡𝑦(𝑡)𝑑𝑡

1

0
                                                                                        (26)   

Taking the fractional integration of both sides of the equation, we get  

𝑦(𝑥) = 𝑦(0) + 𝐼𝛼(𝑠𝑖𝑛𝑥 +  𝑒3𝑥) + 𝐼𝛼(∫ 𝑥𝑒𝑡𝑦(𝑡))𝑑𝑡
1

0
                                                                        (27) 

To determine the approximate solution of (26), we say 

𝑦(𝑥) = ∑ 𝑎𝑖
3
𝑖=0 𝐵𝑖,3(𝑥)  

And after substituting into equation (27), we get 

∑ 𝑎1𝐵𝑖,3(𝑥) = 𝐼𝛼3
𝑖=0 (sin 𝑥 +  𝑒3𝑥) +  𝐼𝛼 (∫ 𝑥𝑒𝑡1

0
∑ 𝑎𝑖

3
𝑖=0 𝐵𝑖,3(𝑡)𝑑𝑡)  

So,  
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𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼𝛼 [𝑎0𝑥 ∫ (1 − 𝑡)3𝑒𝑡1

0
𝑑𝑡 +

3𝑎1𝑥 ∫ (𝑡 + 𝑡3 − 2𝑡2)𝑒𝑡1

0
𝑑𝑡 + 3𝑎2𝑥 ∫ (𝑡2 − 𝑡3)𝑒𝑡1

0
𝑑𝑡 − 𝑎3𝑥 ∫ 𝑡31

0
𝑒𝑡𝑑𝑡] = 𝐼𝛼(𝑠𝑖𝑛𝑥 + 𝑒3𝑥)  

Using the maclaurin series up to five terms on the right hand side, we get 

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼𝛼 [𝑎0𝑥 ∫ (1 − 𝑡)3𝑒𝑡1

0
𝑑𝑡 +

3𝑎1𝑥 ∫ (𝑡 + 𝑡3 − 2𝑡2)𝑒𝑡1

0
𝑑𝑡 + 3𝑎2𝑥 ∫ (𝑡2 − 𝑡3)𝑒𝑡1

0
𝑑𝑡 − 𝑎3𝑥 ∫ 𝑡31

0
𝑒𝑡𝑑𝑡] = 𝐼𝛼 (1 + 4𝑥 +

9

2
𝑥2 +

13

3
𝑥3 +

27

8
𝑥4 +

81

40
𝑥5)  

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝐼𝛼𝑎0𝑥{(1 − 𝑡)3(𝑒𝑡) − 3(1 −

𝑡)2(−1)𝑒𝑡 + 6(1 − 𝑡)(𝑒𝑡) + 6𝑒𝑡} 0
1 + 3𝑎𝑖𝑥{(𝑡 + 𝑡3 − 2𝑡2)𝑒𝑡 − (1 − 3𝑡2 − 4𝑡)𝑒𝑡 + (6𝑡 −

4)𝑒𝑡 − (6)𝑒𝑡}0
1 + 3𝑎2𝑥{(𝑡2 − 𝑡3)𝑒𝑡 − (2𝑡 − 3𝑡2)𝑒𝑡 + (2 − 6𝑡)𝑒𝑡 + 6𝑒𝑡}0

1 = 𝐼𝛼 (1 + 4𝑥 +

9

2
𝑥2 +

13

3
𝑥3 +

27

8
𝑥4 +

81

40
𝑥5)  

𝑎0(1 − 𝑥)3 + 𝑎13𝑥(1 − 𝑥)2 + 𝑎23𝑥2(1 − 𝑥) + 𝑎3𝑥3 − 𝑎0(6𝑒 − 16)
Γ(2)

Γ(2+∝)
𝑥1+∝ −

3𝑎1(11 − 4𝑒)
Γ(2)

Γ(2+α)
𝑥1+𝛼 − 𝑎3(6 = 6𝑒)

Γ(2)

Γ(2+𝛼)
𝑥1+𝛼 =

𝑥𝛼

Γ(𝛼+1)
+ 4

𝑥1+𝛼

Γ(𝛼+4)
+ 9

𝑥2+𝛼

Γ(𝛼+3)
+

26
𝑥3+𝛼

Γ(𝛼+4)
+ 81

𝑥4+𝛼

Γ(𝛼+5)
+ 243

𝑥5+𝛼

Γ(𝛼+6)
  

𝑎0 [(1 − 𝑥)3 − (6𝑒 − 16)
𝑥1+𝛼

Γ(2+𝛼)
] + 𝑎1 [3𝑥(1 − 𝑥)2 − (11 − 4𝑒)

𝑥1+𝛼

Γ(2+α)
] + 𝑎2 [3𝑥2(1 −

𝑥) − 3(3𝑒 − 8)
𝑥1+𝛼

Γ(2+α)
] + 𝑎3 [𝑥3 − (6 − 2𝑒)

𝑥1+𝛼

Γ(2+𝛼)
] =

𝑥𝛼

Γ(𝛼+1)
+ 4

𝑥1+𝛼

Γ(𝛼+4)
+ 9

𝑥2+𝛼

Γ(𝛼+3)
+

26
𝑥3+𝛼

Γ(𝛼+4)
+ 81

𝑥4+𝛼

Γ(𝛼+5)
+ 243

𝑥5+𝛼

Γ(𝛼+6)
  

𝑎0 [(1 − 𝑥)3 − (6𝑒 − 16)
𝑥1+𝛼

Γ(2+𝛼)
] + 𝑎1 [3𝑥(1 − 𝑥)2 − (11 − 4𝑒)

𝑥1+𝛼

Γ(2+α)
] + 𝑎2 [3𝑥2(1 −

𝑥) − 3(3𝑒 − 8)
𝑥1+𝛼

Γ(2+α)
] + 𝑎3 [𝑥3 − (6 − 2𝑒)

𝑥1+𝛼

Γ(2+𝛼)
] =

𝑥0.5

Γ(1.5)
+ 4

𝑥1.5

Γ(2.5)
+ 9

𝑥2.5

Γ(3.5)
+ 26

𝑥3.5

Γ(4.5)
+

81
𝑥4.5

Γ(5.5)
+ 243

𝑥5.5

Γ(6.6)
    

                                                                                                                                               (28) 

Substituting x=0.1, 0.2, 0.3,and 0.4 into equation (28) respectively, we get a linear system that 

has the following; 

0.721633𝑎0+0.233947𝑎1+0.0159495𝑎2-0.0124032𝑎3= 0.4613003634 

0.4911629𝑎0+0.3583907𝑎1+0.0647443𝑎2-0.02991𝑎3= 0.83143000363 

0.3047198𝑎0+0.39527𝑎1+0.0.1315797𝑎2-0.0426451𝑎3= 1.28450996363 
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0.41570638𝑎0+0.3595659𝑎1+0.1995957𝑎2-0.0432256𝑎3= 1.86991639505 

Solving the system of equations above with MAPLE 18 gives 

𝑎0= 0.02422727 

𝑎1= 2.5206785 

𝑎2= 10.194955798 

𝑎3= 24.8720339006 

Thus the approximate solution of equation (26) when 𝛼 = 0.5 is 

𝑦(𝑥) = 0.02422726997(1 − 𝑥)3 + 2.5206784693(3𝑥)(1 − 𝑥)2 +

10.19495579849(3𝑥2)(1 − 𝑥) + 24.87203390075(𝑥3)  

Table 3 showing the exact and approximate solution of equation (26) with the use of Bernstein 

polynomial 

X Exact solution Approximate solution from 

the use of Bernstein 

polynomial 

0.1 0.3 0.92807099176 

0.2 1.0 2.1588049496 

0.3 2.1 3.7192027439 

0.4 3.6 5.6229876488 

0.5 5.5 7.881145475 

0.6 7.8 10.5046620416 

0.7 10.5 13.504523465 

0.8 13.6 16.8917153 

0.9 17.1 20.677223495 
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Figure 2 showing the graph of approximate solution from Bernstein polynomial and the exact 

solution. 

Table 4 showing the absolute error from the use of Bernstein polynomial 

X EXACT SOLUTION APPROXIMATE SOLUTION  

FROM THE USE OF BERNSYEIN  

POLYNOMIAL 

ABSOLUTE ERROR 

FROM THE USE OF 

BERNSTEIN 

POLYNOMIAL 

0.1 
0.3 0.92807099176 

-0.62807099176 

0.2 
1.0 2.1588049496 

-i.1588049496 

0.3 
2.1 3.7192027439 

-1.61920274439 

0.4 
3.6 5.6229876488 

-2.0229876488 

0.5 
5.5 7.881145475 

-2.381145475 

0.6 
7.8 10.5046620416 

-3.004523465 

0.7 
10.5 13.504523465 

-3.2917153 

0.8 
13.6 16.8917153 

-3.577223495 

0.9 
17.1 20.677223495 

0.2591649 
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Discussion 

This work is focused on the use of 

Bernstein polynomial for solving fractional 

integro differential equation at∝= 0.5, the 

systems of equation gotten in example 1 

and 2 were solved using MAPLE 18. Table 

1 shows the approximate solution of 

equation (17) at x=0.1 down to 0.9 and 

when compared to the exact solution it is 

observed that the exact solution increases as 

the value of x increase and so does the 

approximate solution increase as the value 

of x increases as well. The difference which 

is the absolute error as shown in table 2 is 

not much. In figure 1 a graphical 

representation of the solution gotten from 

the use of Bernstein polynomial and exact 

solution is shown and from the graph one 

can see that the solution are close at lower 

values of xand grow bigger as the value of 

x increases. Table 2 also show the solution 

of equation (26) from the use of Bernstein 

polynomial and the exact solution. This 

time around the exact solution have smaller 

figures at different value of x compared to 

the approximate solution gotten from the 

use of Bernstein polynomial unlike in table 

1 of example 1which shows the exact 

solution having bigger figures at different 

values of x when compared to the 

approximte solution. Table 3 also show that 

as the values of the exact solution increases 

the values of the approximate solution 

increases as well. Table 4 shows the 

absolute error of the solutions and it is 

observed that the difference between the 

exact solution and the approximate solution 

is not much.. figure 2 shows the graphical 

representation of the exact and approximate 

solution and like in figure 1 it is observed 

that at lower values of x the solution are 

close but grow bigger as the value of x 

increases. 

Conclusion 

The study applied the use of Bernstain 

polynomial to find the solution of fractional 

integro differential equations. The method 

was use to solve two different problems. 

The result obtained was compared to the 

exact solution of and the deviation 

negligible. Also the result was presented in 

graphical form to further illustrate the 

accuracy of the method.
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