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        ABSTRACT 

The Wiener space is the collection of all continuous function on a given domain, taking 

values in a metric space, and the Wiener functional space has a canonical form of any 

square- integrable functional in terms of the integrals. This paper attempted to shown the 

existence of a canonical representation of all square-integrable Martingale with respect 

to {ℱ𝑊(𝐻), 𝐻 ∈ ℳ} under very general condition on ℳ. The major key here is to define 

multiple stochastic integral of the form 
∫ 𝜏(ℎ1, ℎ2, … . , ℎ𝑚)𝑊(𝑑ℎ) … 𝑊(𝑑ℎ𝑚)

 ℋ𝑚                                                                    
  where 

𝜏 is (in general) a random integrand 𝛽-adapted in a suitable sense. This was achieved by 

critically examining a formula for changing a multiple stochastic integrals 

onto L2(η, ℱW 𝒜) and adapting an iterated formula, which will be to obtain through the 

application of iterated integrals. 

 

Keywords: Canonical form, Square-integrable Martingale, random integrand, iterated 

formula, iterated integrals.  

 

 

 INTRODUCTION 

In Mathematics, Wiener space is the collection 

of all continuous function on a given domain 

(usually a sub interval of the real line), taking 

value in metric space (usually n-dimensional 

space in Euclidean space). Wiener space is 

useful in the study of stochastic process whose 

sample path is continuous function. It is named 

after the American Mathematician Norbert 

Wiener for his investigations on the 

mathematical properties of the one-dimensional 

Brownian motion.  Considering, 𝑃 ⊆ ℜ𝑛 and a 

metric space (S, d), then one can define the 

classical Wiener space 𝐶0(𝑃; 𝑆) as the space of 

all continuous function 𝑓: 𝑃 → 𝑆 ie for every 

fixed 𝑡 in 𝑃 

𝑑(𝑓(𝑎), 𝑓(𝑡)) → 0 𝑎𝑠| 𝑎 − 𝑡| → 0.  

 

of a uniform convergence on [0, 𝑇], or uniform 

topology. (ii) The classical Wiener space has a 

separability and completeness property. It is 

stated here that S is both a separable and 

complete space; separability is a consequence of 

the Stone-Weiestrass theorem while 

completeness is a consequence of 

the fact that the uniform limit of a sequence of 

continuous functions is itself continuous. (iii) 

The Wiener space is also known with the 

property of tightness; this is evident on the 

application of the Arzel�̂�-Ascoli 
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and only if the following conditions are met: 

lim
𝑎→∞

lim
𝑛→∞

𝑠𝑢𝑝𝜇𝑛{𝑓𝜖𝐶|𝑓(0)| ≥ 𝑎} = 0, and 

lim
𝛿→0

lim
𝑛→∞

𝑠𝑢𝑝𝜇𝑛{𝑓𝜖𝐶|𝜔𝑓(𝛿) ≥ 휀} = 0 for all 

휀 > 0. Revuz and Yor (1999). 

There is a standard measure on 𝐶0 which is the 

Wiener measure. It is also known as a Gaussian 

measure which is strictly a positive probability 

space. However, all Gaussian measures can be 

represented by the abstract Wiener space 

transformation as stated by the structure 

theorem for Gaussian measures. Madras and 

Sezer (2011).  

 

The theory of iterated integrals was first 

introduced by Chen in Frederick, et al (2015) in 

order to construct functions on the (infinite-

dimension) space of paths on a manifold, and has 

since become a prominent tool in various 

branches of algebraic geometry, topology and 

number theory. The idea behind an iterated 

integral is closely connected to the concept of 

single-variable calculus. Fubini’s theorem helps 

us to determine iterated integrals without the use 

of limit definition, but by taking the integral one 

at a time. This is prominent in the application of 

fundamental theorem of calculus from single –

variable calculus to finding the exact value of 

each integral, beginning with inner integral. The 

theorem affirms the uniqueness and consistency 

of results regardless the order of integration. 

Mathew, et al (2022). In multivariable calculus, 

an iterated integral is the outcome of applying 

integrals to a function of more than one variable 

by considering some of the variables as given 

constants. Also we discussed a multiple integral 

as a function of several real variables. For 

example,𝑓(𝑝, 𝑞) or 𝑓(𝑝, 𝑞, 𝑟). Integrals of a 

function of two variables over a region in 𝘙2 

(real-number plane) are called double integrals 

and integrals of a function of three variables over 

a region in   𝘙3 (real-number 3 dimensional 

spaces) are called triple integrals according to 

Stewart (2008). For multiple integrals of a 

single-variable function, thus we consider 

Cauchy formula for repeated integration.  

Researchers have revealed that Wiener measure 

and Wiener measurability acted poorly when 

subjected to change of scale projection and 

translation. It was under this prediction that 

Cameron and Martin,(1947) demonstrated by 

way of proof that an analytic Feynman integral 

can be written by a limit of Wiener integrals for 

a larger class of functional on the Wiener space 

which actually yield a positive result indicating 

a good change of scale formula for Wiener 

integrals on the Wiener space.  

Cameron and Martin (1945) examined the 

behavior of Wiener integrals on projections and 

translations and in 1947, and established the 

reaction of measures and measurability within 

the contest of change of scale on the Wiener 

functional space. In a similar vain, the Banach 

algebra  ϐ of functional on 𝐶𝑜[0, 𝑇] was 

introduced by Cameron and Storvick (1988), 

Deereusefond et al (1998).   

The study of multiple stochastic integrals related 

to a class of set was carried out by Hajek and 

Wong (1983) where special cases of multiple 

Wiener integral and It�̇� integral were analyzed. 

Wong - Zakai extended this result in order to 

obtain its generalization through specialization 

of the class of set adequately. Hajek and Wong 

(1983), constructed formulas for transforming a 

stochastic integral onto the space of Wiener 

functional and also transforming multiple 

stochastic integrals as iterated integrals 

A new result of analytic function on 𝑋 was 

introduced by Setsuo (2001) under the work 

frame of analytic functions on abstract Wiener 

spaces. He proved that stochastic line integrals 
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of real analytic have 1-forms along Brownian 

motion, revealing also that solutions to 

stochastic differential equations with real 

analytic coefficient are analytic Wiener 

functional. (Horfely (2005).

The general objective of this paper is to demonstrate the existence of a canonical representation of all 

square- integrable Martingale with respect to {ℱ𝑊(𝐾), 𝐾 ∈ ℋ} under very general condition on ℳ, 

While the specific objective is to; relate Multiple Stochastic Integral with all square- integrable 

Martingale with respect to {ℱ𝑊(𝐻), 𝐻 ∈ ℳ} under very general condition on ℳ; establish a 

relationship between multiple stochastic integrals and iterated integrals in the Wiener functional space  

and demonstrate that every Wiener functional has a canonical form of any square-integrable  function 

in terms of the integrals defining a multiple stochastic integrals. 

DEFINITIONS 

In this section, we shall endeavor to define 

some concepts as relating to the research topic 

and also give a clearer meaning of variables 

and notations according to their usage in this 

research work.  

We shall commence this section by critically 

looking at the meaning and characteristics of the 

Wiener process as; 

(Mean square integrable): A random process 

𝑋 is mean square-integrable from 𝑎 to 𝑏 if   

𝐸 [∫ 𝑋 2(𝑡)𝑑𝑡
𝑏

𝑎
] is finite. The class of 

all such processes will be denoted as 

𝒮2[𝑎, 𝑏]. 

       Note that if 𝑋 is bounded on [𝑎, 𝑏], 

in the sense that | 𝑋(𝑡)| ≤ ℳ with 

probability 1 for all    

       𝑎 ≤ 𝑡 ≤ 𝑏, then 𝑋 is square-

integrable from 𝑎 to 𝑏.  

 (𝓢𝟐 norm): The norm of a process 𝑋 ∈ 𝒮2[𝑎, 𝑏] 

is its root-mean-square time integral:  

||𝑋||𝒮2
≡ │𝐸 [∫ 𝑋2(𝑡)𝑑𝑡

𝑏

𝑎
] │

1
2⁄   

(It�̂� integral of an elementary process): if  𝑋 

is an elementary, progressive, non-anticipative 

process, square-integrable from 𝑎 to 𝑏, then its  

It�̂� integral from 𝑎 to 𝑏 is  

 

   ∫ 𝑋(𝑡)𝑑𝑊 ≡ ∑ 𝑋(𝑡𝑖)(𝑊(𝑡𝑖+1)) −𝑖≥0
𝑏

𝑎

𝑊(𝑡𝑖) where the 𝑡𝑖 are the increasing 

sequence of time    

    starting at 0, truncated below by 𝑎 and 

above by 𝑏. 

( It�̂� integral):  let 𝑋 be progressive, non-

anticipative and square-integrable on [𝑎, 𝑏]. then 

its  

              It�̂� integral is ∫ 𝑋(𝑡)𝑑𝑊 ≡
𝑏

𝑎

lim
𝑛

∫ 𝑋𝑛(𝑡)𝑑𝑊
𝑏

𝑎
  

             Taking the limit in 𝐿2, with 𝑋𝑛 , we say 

that 𝑋 is It�̂�-integrable on [𝑎, 𝑏]. 

 

Stochastic Process: A stochastic process 𝑋 =

{𝑋(𝑡), 𝑡 ∈ 𝑇} is a collection of random variables 

on a common probability space (𝛺, 𝒜, ℱ). It can 

also be written as a function 𝑋: 𝑇𝑥 𝛺 → 𝑹 such 

that 𝑋(𝑡, . ) is 𝓐: Ը-measurable in ω ∈ 𝛺 for 

each 𝑡 ∈ 𝑇. Hajek and Wong (1981).  

Where  𝛺 = 𝑹𝑇 as the set of all functions ω:  

𝑇 → 𝑹 and express 𝑋(𝑡, 𝜔) = 𝜔(𝑡), so that ω 

becomes the sample path, while 𝓐 is the 

𝛿 −algebra generated by cylinder sets having the 

form 
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𝐵 = {𝜔 ∈ 𝛺: 𝑋(𝑡, 𝜔) ∈ 𝑘𝑖𝑓𝑜𝑟 𝑖 = 1,2, … . . , 𝑛} 

where 𝑘𝑖 ∈ 𝑇 and 𝑘𝑖 ∈ Ը with assigned 

probability as  

𝑃(𝐵) = 𝐼𝐵𝑑𝐹𝑡1,𝑡2,…,𝑡𝑛
(𝑇1, 𝑇2, . . , 𝑇𝑛)𝑘1×𝑘2,…,×𝑘𝑛

∫
                                                     (1) 

Separable processes: A stochastic process  𝑋 =

(𝑋𝑡, 𝑡 ∈ 𝑇) defined on a complete probability 

space  (𝛺, 𝒜, ℱ) is a separable process if we can 

obtain countably dense subset 𝐷 =

{𝑑1, 𝑑2, 𝑑3, … . } of  𝑇 generally referred to as 

separant set, given that for any open and closed 

interval where  𝐼𝑧 and 𝐼𝑧1
 are denote open and 

closed interval  respectively, then the subset  

�̅�  =  ⋃ (𝜔 ∈ 𝛺: 𝑋𝑡(𝜔) ∈ 𝐼𝑧1
)𝑡∈𝑇∩𝐼𝑧
  of 𝛺 is not 

in comparison with the  

 𝐵 =  ⋃ {𝜔 ∈ 𝛺 ∶  𝑋𝑑𝑗
(𝜔) ∈ 𝐼𝑧1

}𝑑𝑗∈ 𝐷 ∩ 𝐼𝑧
 

which is the event.  

By virtue of the law of completeness, �̅� is an 

event and 𝑃(�̅�) = 𝑃(𝐵)  

Abstract Wiener space: Kuo (1972) define a 

set in an abstract Wiener space and examine the 

following stochastic integral in the set define as; 

 𝑄 ⊂ 𝐷 be the abstract Wiener space, then   

𝑋(𝑡) = 𝑥 + ∫ 𝑈(𝑟, 𝑥(𝑟)𝑑𝑊(𝑟)) + ∫ 𝛿(𝑟, 𝑥(𝑟))𝑑𝑟
𝑡

0

𝑡

0
                                                        (2)  

Where 𝑊(𝑡) is a Wiener process in 𝐷.  

Piech generated a fundamental solution {ℎ𝑡(𝑟, 𝑑𝑦)} which is related to the process of  𝑋𝑡 by  

∫ 𝑓𝐷(𝑔)ℎ𝑡(𝑥, 𝑑𝑔) = 𝐸𝑥[𝑓(𝑥(𝑡))]                                                                                      (3) 

for bounded 𝑙𝑝 − 1 function of 𝑓.  

Covariance-type operator on Wiener space: 

Defining a covariance-type operator on Wiener 

space, Setsuo (2001), uses two random 

variables, 𝐽 and 𝐾 in the Gross-Sobolev space 

𝑀1,2 of random variable having square-

integrable Malliavin derivative by letting  

𝛤𝐽. 𝐾 ∶ =  (𝑀𝐽 − 𝑀𝑃−1𝐾)                                                                                                    (4) 

where 𝑀 is the Malliavin derivative and Γ is the notion of covariance and canonical metric for vector 

and random fields.  

Abstract Wiener space (𝝁) : An abstract Wiener space (𝜇) about the first variation for the functions in 

𝑓(𝐷𝑛) of the form  

𝐾(�̅�) = ∫ 𝑒𝑥𝑝{∑ (𝑘, 𝑥𝑖)
2𝑛

𝑖=1 }𝑑𝜇(𝑘), 𝜇 ∈ 𝜇(𝑘) 

  𝑘                                                                    
                                                                 (5)  

Progressive Process: A continuous-parameter 

stochastic process 𝑋 adapted to a filtration 

(ℳ𝑡) is progressively measurable or 

progressive when 𝑋(𝑠, 𝑤), 0 ≤ 𝑠 ≤ 𝑡, is always 
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measurable with respect to  𝛽𝑡 × ℳ𝑡  where 𝛽𝑡 

is the Borel 𝛿-field on [0, 𝑡]. If  𝑋 has 

continuous sample paths, for instance, then it is 

progressive. 

Non-anticipating filtrations processes: Let 𝜏 

be a standard wiener process, {ℱ𝑡}, the right-

continuous completion of the natural filtration of 

𝜏, and ℋ any 𝛿-field independent of {ℱ𝑡}. Then 

the non-anticipating filtrations are the ones of 

the form 𝛿(ℱ𝑡 ∪ ℳ), 0 ≤ 𝑡 ≤ ∞. A stochastic 

process 𝑋 is non-anticipating if it is adapted to 

some non-anticipating filtration.   

METHODOLOGY 

Having critically examined related work of 

some researchers, it is expedient that various 

presentations have been made in different 

instances in order to establish the existence of a 

canonical representation of all square- 

integrable Martingale with respect to 

{ℱ𝑊(𝐾), 𝐾 ∈ ℋ} under very general condition 

on ℳ, 

However in this research, we shall be present the 

following as the methodology of this paper.   

Multiple Wiener Integrals (MWI) 

We shall define the Multiple Wiener integrals 

(MWI’s) of the following two types 

𝐼𝑟(𝑓) = ∫ … … . . ∫ 𝑓(ℎ1, … … , ℎ𝑟)𝑑𝑊ℎ1
, … . , 𝑑𝑊ℎ𝑟

 = ∫ 𝑓(ℎ)𝑑𝑊ℎ
𝑟  

𝐽𝑟(𝑓) = ∫ … … ∫ 𝑓(ℎ1, … . . , ℎ𝑟)𝑊ℎ1
, … . , 𝑊ℎ𝑟

𝑑ℎ1, … . , 𝑑ℎ𝑟
= ∫ 𝑓(ℎ)𝑋ℎ

𝑟𝑑ℎ  

Where 𝑟 = 1,2, … … while dealing with integral 𝐼𝑟 resp.  𝐹𝑟 ,  we will assume that (𝐼) resp.(𝐹) 

(𝐼): 𝑊ℎ = 0  a.s for some ℎ0 ∈ 𝓗 

(𝐽) ∶ 𝑊 is mean square continuouss 

F3or 𝑊 a Wiener process, 𝑓 is taken to be a 

function in 𝐿2(ℋ𝑚 , 𝑑ℎ𝑚) and (𝑚!)−
1

2 is an 

isomorphism on �̂�2(ℋ𝑟 , 𝑑ℎ𝑟) (the Hibert space 

of all symmetric functions in 𝐿2(ℋ𝑚 , 𝑑ℎ𝑟)) 

into 𝐿2(𝑊). However in accordance to the 

Wiener process, it is necessary and more 

reasonable to expect that functions 

𝑓(ℎ1, … . . , ℎ𝑟) of the form 

∅1(ℎ1) … ∅𝑟(ℎ𝑟), ∅ ∈ ℱ(𝐹ℎ) are admissible 

integrands and their integral is 𝐼𝑟(𝑓) is the 

iterated integral. |(∅1) … . |(∅𝑟) when ∅1, … . , ∅𝑟 

are orthogonal. This imply that ℱ(⨳𝑟 ℋ) is the 

proper class of integrands for the MWI’s 𝐼𝑟: and 

similarly 𝜋2(⨳𝑟 ℋ) is the proper Horfelt (2005) 

(see also Kloeden and Platen,(1991)) class of 

integrands for the MWI 𝐹𝑟.  

 

The Existence of canonical form in all 

Square- integrable Martingale in Wiener 

Functional Space  

In this section, we shall be discussing the 

existence of a canonical representation of all 

square- integrable Martingale with respect to 

{ℱ𝑊(𝐻), 𝐻 ∈ ℳ} under very general condition 

on ℳ, The major key here is to define multiple 

stochastic integral of the form 

∫ τ(h1, h2, … . , hm)W(dh) … W(dhm)

 ℋm                                                                    
  

where 𝜏 is (in general) a random integrand β-

adapted in a suitable sense. Hence by a careful 

cross examination of the multiple stochastic 

integral, we will establish the fact that the 

Wiener functional and its canonical form can be 

a means of representing the multiple stochastic 

integral.   

 

Relating Multiple Stochastic Integral with all 

square- integrable Martingale with respect to 

{𝓕𝑾(𝑯), 𝑯 ∈ 𝓜} under very general 

condition on ℳ, 
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This is the main focus of this paper, which we 

intend to achieve this by using a collection of 

subsets of a fixed rectangle in ℜ𝑛 as thus; 

Let us define a collection of subset of a fixed 

rectangle ℋ in ℜ𝑛 to be ℳ.  Given  

set 𝐴1 ,𝐴2, … … . , 𝐴𝑛 ∈ ℜ(ℋ) let define their 

support relative to ℳ as the set of ℳ  

𝐹𝐴1
, 𝐹𝐴2,

, . . . . , 𝐹𝐴𝑛
=∩ {𝐷: 𝐷 ∈ ℳ} and 𝐷 ∩

𝐴1 ≠ 0 for [≤ 𝑖 ≤ 𝑟) with the convention that if 

no such set 𝐷 then the support is taken to be all 

of 𝓗. The intersection of all the set in ℳ is the 

support of the empty collection of sets (𝑖. 𝑒 𝑚 =

0) and its denoted by 𝐹. Let also assumed that 

the support of any collection of set 

 𝐴1 ,𝐴2, … … . , 𝐴𝑚  is contained in ℳ. This 

assumption can only be true just by only 

enlarging a given collection of set ℳ. If 

ℎ1 , ℎ2 , … … , ℎ𝑚 are points in 𝓗, then their 

support will be written as 𝐹ℎ1
 , 𝐹ℎ2

 , … … . , 𝐹ℎ𝑚
. 

It therefore means that  ℎ1  , ℎ2, … . . , ℎ𝑚 are ℳ- 

independent if no point is contained Jeong-

Gyoo(2021) in the support of the remaining 

ones. For ℳ=

{𝑎𝑙𝑙 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠 𝑖𝑛 ℋ}, 𝐹ℎ1
 , 𝐹ℎ2

 , … … . , 𝐹ℎ𝑚
.  is 

just  {ℎ1, … … ℎ𝑚} so that ℳ- independent 

means distinct. Also for ℳ=

{𝑎𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑥 𝑠𝑒𝑡𝑠 𝑖𝑛 ℋ}, the support of 𝑛 point 

is their convex hull and the points are ℳ- 

independent if and only if they are extreme 

points of their convex hull. When ℋ⊂ ℜ+
𝑛   and 

ℳ= {𝑌ℎ:  ℎ ∈ ℋ},𝑌ℎ is the closed rectangle 

bounded by the origin and ℎ. 

Then (𝐹ℎ1
 , 𝐹ℎ2

 , … … . , 𝐹ℎ𝑚
). is the smallest set 

in ℳ which contains (  ℎ1  , ℎ2, … . . , ℎ𝑚) For 

further illustration, when 𝓗 ⊂ ℜ+
𝑛  , and ℳ is 

obtained by {𝑋ℎ ∶ ℎ ∈ ℋ} where 𝑋ℎ = {𝐹 ∈

ℋ: 𝑗𝑖 ≤ ℎ1𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖} .   

Then for ℎ1 , ℎ2, … . , ℎ𝑚 ∈  𝓗, 𝑭𝒉𝟏,𝒉𝟐,……..𝒉𝒎=∪ 𝒗𝒉𝒊
 

. Moreover  

ℳ= {⋃ 𝑌ℎ𝑖
: 𝑚 < +∞𝑛

𝑖=1 𝑎𝑛𝑑ℎ1, ℎ2, … . , ℎ𝑛 ∈

ℋ}. 

In this example, 𝑛 points are unordered if and 

only if they are pair wise unordered.  

Suppose ℋ̂𝑚 is the subset of ℳ- independent 

points in ℋ𝑚 then for a given collection ℳ, ℋ̂𝑚 

would be meaningless for sufficiently large 𝑚. 

For instance if ℳ= {𝑌ℎ} is the collection of 

rectangles bounded by the origin and ℎ ∈ 𝓗 ⊂

𝕽+
𝒎, then ℋ̂𝑚is empty for 𝑚 > 𝑛. That is no 

more than 𝑛 points can be ℳ- independent. For 

extreme cases, ℳ= {ℋ}, ℋ̂𝑚 is empty for all 

𝑚 ≥ 1 

Let define 휀-support relative to ℳ of 

 𝐴1 ,𝐴2, … … . , 𝐴𝑛 ∈ ℜ𝑛(ℋ) by  

 

𝐹𝐴1,𝐴2,…..,𝐴𝑛
= 𝐹𝐷( , 𝐴1),𝐷(  ,𝐴2),……,𝐷(  ,𝐴𝑛)  if 

given a subset 𝐴 of 𝓗 defining 𝐷(휀 , 𝐴) as the 

set of points in 𝓗 of Euclidean distance at most 

휀 from 𝐴 for 휀 > 0 and let 𝐹𝐴1,𝐴2…….,𝐴𝑛

(.)
  denote 

the union over all휀 > 0 of 휀-support of 

𝐴1, 𝐴2 , … . . , 𝐴𝑛 

 

The 휀- support of 𝐴1, 𝐴2 , … . . , 𝐴𝑛 increases to 

𝐹𝐴1,𝐴2…….,𝐴𝑛

(.)
 as 휀 decreases to zero and  

𝐹𝐴1,𝐴2…….,𝐴𝑛

(.)
 is contained in the support of 

𝐴1, 𝐴2 , … . . , 𝐴𝑛 according to Jeong-Gyoo 

(2021). Let (𝛺 , ℱ , 𝒫) be a fixed probability 

space and let  {ℱ(𝐴): 𝐴 ∈ ℜ(ℋ)} be a family of 

sub-𝛿-algebra of 𝓕 which is increasing in the 

sense that 𝐴 ⊂ 𝐷 implies that 𝓕(𝐴) ⊂ ∅(𝐷) and 

let (𝑊(𝐴): 𝐴 ∈ ℜ(ℋ)) be a Wiener process 

such that ℱ𝑊(𝐴)⊂ ℱ(𝐴) and ℱ𝑤(𝐴) is 

independent of ℱ(𝐴) for all 𝐴 in ℜ(ℋ) then 

these conditions are true. 

 (i) For every collection of rectangles 

𝐴1, 𝐴2 , … . . , 𝐴𝑛 such  

that∏ 𝐸𝑖 ⊂ ℋ̂𝑚𝑛
𝑖=1 𝜇(𝐴𝑖 ∩ 𝐹𝐴1,𝐴2,…..,𝐴𝑛

) = 0;  
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.(ii) For each 𝑚 ≥ 1, the mapping ℎ =

(ℎ1, ℎ2, … . . , ℎ𝑚) … … 𝐹 is a continuous map 

from ℋ𝑚 to the collection of compact sets under 

the Hausdorff metric: 𝑢(𝐴 ∶ 𝐷)  =

(max
𝑥=𝐴

min
𝑦∈𝐷

|𝑥 − 𝑦| + max
𝑥∈𝐷

min
𝑦∈𝐴

|𝑥 − 𝑦|)  

(iii) For every collection of rectangles     

𝐴1, 𝐴2 , … . . , 𝐴𝑛 in , ∀ 𝜖 > 0 . 

    ℱ(𝐹𝐴1,𝐴2 ,……,𝐴𝑁
) = 𝑓(𝐹𝐴1,𝐴2,……,𝐴𝑛

)  since  

ℱ𝑤(𝐴) ⊂ ℱ(A) for all 𝐻 in ℜ(ℋ), condition (iii) 

implies the following which we shall refer to as 

condition  

(iv) For every collection of rectangles     

𝐴1, 𝐴2 , … . . , 𝐴𝑛 in 𝓗, then (𝐹𝐴1,𝐴2,…..,𝐴𝑛
−

𝐹𝐴1 ,𝐴2 ,……,𝐴𝑛

(.) ) = 0 . 

 

If ℱ𝑤(𝐴) = ℱ(𝐴) for all 𝐴, then condition (iii) 

and (iv) are equivalent , condition (ii) and (iii) is 

a continuity condition. For a ℳ satisfying 

condition (i) to (iii), we shall now define 

multiple stochastic integral of order 𝑚 as; 

∅ = 𝑊𝑛 = ∫ ∅ , 𝑊(𝑑ℎ𝑛)

ℋ𝑚
  

For integrands ∅(𝜔, ℎ), (𝜔, ℎ) ∈ 𝛺𝑋ℋ𝑚 

satisfying  

 

(a1)∅ is 𝓕 X𝜏𝑚 measurable.  

 

(a2)  for each ℎ ∈ ℋ̂𝑚∅, is ℱ(𝐽𝑔) - measurable  

 

(a3)
∫ 𝐸∅ℎ

2 𝑑ℎ < ∞

ℋ𝑚
 

The space function satisfying (a1-a3) is denoted 

by 𝐿𝜏
2(𝛺 𝑋 ℋ̂𝑚) for ∅ and 𝜃 in  𝐿𝜏

2(𝛺 𝑋 ℋ̂𝑚)  

 

Define  < ∅ , 𝜃 >= 𝐸∫ ∅ℎ 𝜃ℎ𝑑ℎ

ℋ𝑚
 and let ϕ 

denote the summarization of  ∅, i.e  

 ϕ,  =  
1

𝑚!
∑ ∅𝑚(ℎ)! , 𝑥(ℎ) =𝛼   permutation. Call 

∅ atomic if ∅(𝜔, ℎ) =∝ (𝜔)𝐼𝐴(ℎ) where 𝐼𝐴 is 

the  

 

indicator function of a product of rectangles 𝐴 =

∏ 𝐴𝑖
𝑛
𝑖=1  such that𝐻 ⊂ ℋ̂𝑚.  

 

To move further, we need to consider some 

propositions on Multiple Stochastic integrals 

that would be very useful in achieving our aim 

here.  

(Completeness of multiple 

stochastic integrals): Let ℳ be 

a collection of sets such that ℳ 

and {ℱ𝑊(𝐻)}satisfy condition 

(i)-(iii). Then every square –

integrable ℱ𝑊(ℋ)-measurable 

random variable 𝑍 has a 

representation of the form  

𝑍 = 𝐸[𝑍 𝐼ℱ(𝐹)] + ∑ 𝑍𝑛𝑜 𝑊𝑛∞
𝑛=1                                                                                                 (10)   

                                                                  

where 𝑍𝑛𝑜𝑊𝑛 are stochastic integrals defined 

relatively to ℳ and 𝐹 =∩ {𝐷: 𝐷 ∈ ℳ}.  

 

Proof :  

 

The proposition is very familiar Ojo-orobosa (2018) 

Setsuo (2001) and Ustune  (2018)  in case ℳ of all 

closed subsets of ℋ, so that the integrals are multiple 

Wiener integrals. Since by iterated integration 

formula any multiple Wiener integral can be 

represented as a sum of multiple stochastic integrals 

relative to the smaller class of set ℳ, proposition 4.1 

is true in general.  Ojo-orobosa (2018. 

 

Proposition 

 

For 𝑓 in 𝐿2(ℋ), define  
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𝑓𝑚(ℎ1, ℎ2, … . ℎ𝑚) = ∏ 𝑓(ℎ𝑖)𝑛
𝑖=1                                                                                                   (11)  

 

And 𝑊𝑛(𝑓, 𝐾) = (𝑓𝑛𝑜 𝑊𝑛)
𝐾

                                                                                                       (12)  

 

If ℳ and  {ℱ𝑊(𝐾)} satisfy condition (i) –(iii) , then for 𝐾 ∈ ℳ,  

 

𝑊𝑛(𝑓, 𝐻) = 𝑊𝑛(𝑓, 𝐹 ∩ 𝐻) + ∑ (
𝑛
𝑚

) [𝑓𝑚(. )𝑊𝑛−𝑚(𝑓, 𝐼)𝑜 𝑊𝑚]
𝐻

𝑛
𝑚=1                                           (13)  

 

Proof :  

 

Observed that 𝑓𝑚  is symmetric and 

𝑓𝑛(ℎ1, ℎ2, … ℎ𝑛) =

𝑓𝑚(ℎ1, ℎ2, … ℎ𝑚)𝑓𝑛−𝑚(ℎ𝑚+1, … . , ℎ𝑛) 

Thus, equation (4.11) for 𝐾 = ℋ is obtained by 

applying the iterated integration formula to express 

the multiple Wiener integral 𝑊𝑛(𝑓, ℋ) in terms of 

Stochastic integrals relative to ℳ. Then (13) is true 

in general since each side is a martingale relative to 

{ℱ𝑊(𝐾): 𝐾 ∈ ℳ} . Ivan et al (2014) 

 

Proposition 

Let  ℳ and {ℱ(𝐸): 𝐸𝐸ℝ(ℋ)} satisfy the 

condition in section (4.2) , then either 𝑓 ∈
𝐿2(ℋ) or 𝑓 is a bounded function in 𝐿∝

2 (𝜂 × ℋ).   

 Define 𝐿(𝑓, 𝐸) = exp ((𝑓օ𝑊)𝐸 −
1

2
(𝑓2օℳ𝐸))                                                                     (14)  

where (𝑓2օ𝜏)𝐸 is the lebesgue integral of 𝑓2 over 𝐸 then for 𝐸 ∈ ℳ ,  

𝐿(𝑓, 𝐸) = 𝐿(𝑓, 𝐹 ∩ 𝐸) + ∑
1

𝑛!
[𝑓∞𝑚(. )𝐿(𝑓, 𝐹)օ𝑊𝜇]𝐸

∞
𝑛=1                                                        (15) 

Proof  

 

Suppose that 𝑓 ∈ 𝐿2(ℋ) for MWI’S (ℳ=  all closed set) equation (14) reduces to  

 

𝐿(𝑓, 𝐸) = 1 + ∑
1

𝑛! 𝑊𝑛(𝑓, 𝐸)∞
𝑛=1                                                                                                 (16) 

 

Which is also well known for the case of general ℳ . Mathew et al (2022), Revuz and Yor (1999).  

 Using (14) in (16) we have,  

 

𝐿(𝑓, 𝐸) = 1 + ∑
1

𝑛! (𝑊𝑛(𝑓, 𝐹 ∩ 𝐸) + ∑ (
𝑛
𝑚

) [𝑓 ̂𝑚𝑊𝑛−𝑚(𝑓, 𝐹)օ𝑊𝑚]
𝐸

𝑛
𝑚=1 )∞

𝑛=1   

 

= 𝐿(𝑓, 𝐹 ∩ 𝐸) + ∑
1

𝑚! [𝑓𝑚 ∑
1

𝑗! 𝑊𝑗(𝑓, 𝐹)օ𝑊𝑚∞
𝑗=0 ]

𝐸

∞
𝑚=1   

  

= 𝐿(𝑓, 𝐹 ∩ 𝐸) + ∑
1

𝑚! [𝑓𝑚𝐿(𝑓, 𝐹)օ𝑊𝑚]
𝐸

∞
𝑚=1                                                                               (17) 

 

Which establishes (4.13) for 𝑓 in 𝐿2(ℋ) Mathew Mathew et al (2022), Revuz and Yor (1999). 
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DISCUSSION  

We examined the Multiple Wiener integral 

(MWI) by recalling a multiplication formula 

of the multiple Wiener integral which is 

embedded in the following lemma 3.1 which 

we proved by first proving the Leibniz 

formula whose proof follows from its finite 

dimensional version. 

Also we define a collection of subset of a 

fixed rectangle ℋ in ℜ𝑛 to be ℳ.  Given 

set 𝐴1 ,𝐴2, … … . , 𝐴𝑛 ∈ ℜ(ℋ)  and their 

support relative to ℳ as the set of ℳ  

 

𝐹𝐴1
, 𝐹𝐴2,

, . . . . , 𝐹𝐴𝑛
=∩ {𝐷: 𝐷 ∈ ℳ} and 𝐷 ∩

𝐴1 ≠ 0 for [≤ 𝑖 ≤ 𝑟) with the convention that 

if no such set 𝐷 then the support is taken to be 

all of 𝓗. The intersection of all the set in ℳ is 

the support of the empty collection of sets 

(𝑖. 𝑒 𝑚 = 0) and its denoted by 𝐹. 

 We also discussed we considered some 

prepositions and theorems such as; The 

isometry in nature, of multiple stochastic 

integral, this property can be interpreted as; 

Suppose for each  𝑛 ≥ 1 , and ℎ ∈ ℋ𝑚 then 

{𝜙𝑛,𝑚(ℎ): 𝑚 ≥ 1} is said to be a complete 

orthogonal basis for the space of square 

integrable 𝓕(𝐹ℎ)-measurable random variable, 

let assume that  

𝜙𝑛,𝑚(ℎ)  is a symmetric function in ℎ, then the 

multiple stochastic integral isometry property 

is the set of ‘’incremental’’ random variables. 

[𝜙𝑛,𝑚(ℎ)𝑊(𝑑ℎ1)𝑊(𝑑ℎ2) … . . 𝑊(𝑑ℎ𝑚); 𝑛 ≥

0, 𝑚 ≥ 1, ℎ ∈ ℋ𝑚]                                     
This actually helped us to achieve the set goal 

of this paper.  

 

Having critically examined the canonical form 

of all square-integrable Martingale with respect 

to {ℱ𝑊(𝐾), 𝐾 ∈ ℋ} under very general 

condition on ℳ, the study identified that; 

(i)every Wiener functional has a canonical form 

of any square-integrable  function in terms of 

the integrals defining a multiple stochastic 

integrals, 

(ii)demonstrate a relationship between multiple 

stochastic integrals and iterated integrals in the 

Wiener functional space and  

(iii)there is  a canonical representation of all 

square- integrable Martingale with respect to 

{ℱ𝑊(𝐾), 𝐾 ∈ ℋ} under very general condition 

on ℳ                          

CONCLUSION 

Maintaining that 𝑊 is a Wiener process, we 

explored the relationship between the MWI’s 

and the stochastic integrals by establishing that 

each MWI can be transformed and written as an 

iterated integral.  

That is for 𝑓𝑛 ∈ 𝐿2(⨳̂𝑚 ℋ) 

∫ 𝑓𝑚(ℎ)𝑑𝑊ℎ
𝑚

ℎ𝑚
= ∫ (∫ (… . (∫ 𝑓𝑚(ℎ1, … . . , ℎ𝑚)𝑑𝑊ℎ1

ℋ                                      
) … … 𝑑𝑊ℎ𝑚−1

) 𝑑𝑊ℎ𝑚

ℋ                                                                                             

)

ℋ                                                                                                    

         given in (6)  where 

the iterated integral remains as defined.              

Under general condition on ℳ, there is a canonical 

form of all square- integrable      

Martingale with respect to {ℱ𝑊(𝐻), 𝐻 ∈ ℳ}, and 

there after the representation for square-integrable 

Wiener functional which reduces to multiple Wiener 

integrals form 

ℳ=

{𝑎𝑙𝑙 𝑐𝑙𝑜𝑠𝑒𝑑 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑖𝑛 ℜ+
𝑛  𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑡 𝑜𝑛𝑒 𝑐𝑜𝑟𝑛𝑒𝑟}.

 Ojo-orobosa, (2018) 

The relationship between multiple stochastic 

integrals and square integrable martingale was 

established in this paper by considering two major 

operations which includes the rule for which the 

conditional expectation of a multiple stochastic 
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integral is obtained if  given ℱ𝑊 and secondly the 

operation involving the application of an iterated 

integral method for expressing multiple stochastic 

integral defined relatively to ℳ in terms of 

stochastic integrals in relation to another class of  

sets ℳ. These eventually provide the bases for 

relating Multiple Stochastic Integral with all square- 

integrable Martingale with respect to 

 {ℱ𝑊(𝐻), 𝐻 ∈ ℳ}  under very general condition 

on ℳ, 

 

These operations are very relevant more 

importantly the iterated integral method as far 

as this paper is concerned and also very 

prominent in stochastic calculus in general. 

 

Under general condition on ℳ, there is a canonical 

form of all square- integrable      

 

Martingale with respect to {ℱ𝑊(𝐻), 𝐻 ∈ ℳ}, and 

there after the representation for square-integrable  

 

Wiener functional which reduces to multiple Wiener 

integrals form 

 

ℳ=

{𝑎𝑙𝑙 𝑐𝑙𝑜𝑠𝑒𝑑 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠 𝑖𝑛 ℜ+
𝑛  𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛 𝑎𝑡 𝑜𝑛𝑒 𝑐𝑜𝑟𝑛𝑒𝑟}.

 Ojo-orobosa, (2018). 

 

The relationship between multiple stochastic 

integrals and square- integrable Martingale was  

 

established in this paper by considering two major 

operations which includes the rule for which  

 

the conditional expectation of a multiple stochastic 

integral is obtained if  given ℱ𝑊 and secondly the  

 

operation involving the application of an iterated 

integral method for expressing multiple stochastic  

 

integral defined relatively to ℳ in terms of 

stochastic integrals in relation to another class of  

sets  

 

ℳ. These eventually provide the bases for relating 

Multiple Stochastic Integral with all 

 

 square- integrable Martingale with respect to 

{ℱ𝑊(𝐻), 𝐻 ∈ ℳ}  under very general condition on 

ℳ, 

 

These operations are very relevant more 

importantly the iterated integral method as far 

as this study is  

 

concerned and also very prominent in 

stochastic calculus in general. 
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