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     Abstract  

The advection-dispersion equation is a partial differential equation describing a probability 

function for the location of particles in continuum. Finding the analytic solution to this 

equation is very difficult and cumbersome.  Thus, in this research, we have considered the 

numerical approximation of fractional time and space advection-dispersion equation. 

Specifically, Galerkin Method was adopted as the numerical method with Mamadu-Njoseh 

polynomials as basis functions to obtain the approximate solution of the fractional 

adventure-dispersion equation. The study established that the Galerkin method effectively 

solves fractional order advection-dispersion equation with time and space derivatives and 

that the method converges rapidly with an increase in the value of the fractional order 𝛼, 

for 𝑡 = 0.1. The numerical results obtained show that the method converges rapidly to the 

exact solution.  

Keywords: Fractional derivative, Galerkin Method, Mamadu-Njoseh Polynomials 

(MNPs), Algebraic Equations. 

 

 

Introduction 

Liu et al (2003) found that the 

advection-dispersion equation (ADE) is a 

common equation used to describe solute 

transport in aquifers. This equation is a 

deterministic homogeneous equation that 

describes a probability function for particle 

location in a continuum. Fractional calculus 

has gained interest due to its ability to 

accurately depict natural physical phenomena 

and dynamic system processes. FDEs are 

useful in modeling various systems in physics, 

chemistry, and engineering, such as 

viscoelastic systems, dielectric polarization, 

chaotic behavior, control theory, and 

electrolyte-electrolyte polarization 



Nigerian Journal of Science and Environment 2023 Volume 21 (3) 202 - 218 

203 
 

(Lazopoulos, 2006 and Chen et al., 2015). The 

study of FDEs has led to significant focus on 

the exact and numerical solution of fractional 

differential equations and integral equations. 

Numerous schemes, methods, and treatments 

have been proposed to obtain the numerical 

solution of FODEs in recent literature. 

 Meerschaert and Tadjeran (2004) 

devised finite difference approximations to 

solve one-dimensional fractional advection–

dispersion equations with Dirichlet boundary 

conditions in the context of fractional order 

advection dispersion equations. An algorithm 

based on the theorem was proposed by Jiang 

and Lin (2010) to solve fractional advection–

dispersion equations. In order to solve 

fractional advection–dispersion equations with 

fractional derivative boundary conditions, Liu 

and Hou (2017) devised an implicit finite 

difference approach. Additionally, the authors 

provided evidence of the methodology's first-

order convergence, solvability, unconditional 

stability, and consistency. In anomalous 

diffusion, Zhang et al; (2017) found nontrivial 

solutions to a fractional advection–dispersion 

equation. A finite difference approach to 

solving the Riesz fractional advection–

dispersion equations was presented by Zhang 

(2018). An asymmetric discretization method 

and a modification of the shifted Grunwald 

approximation to the fractional context were 

used to arrive at the solution. A finite element 

method was proposed by Roop (2006) to find 

numerical solutions of the two-dimensional 

fractional advection-dispersion equation. Shen 

et al; (2014) used the Riesz operator in 

conjunction with the fractional finite difference 

approximation schema with a weighting factor 

for the fractional advection-dispersion 

equation. In order to solve the two-sided 

Fractional Advection-Dispersion Equation, 

Bhrawy et al; (2015) presented a method based 

on the operational matrices. Using the Caputo 

Fractional Reduced Differential Transform 

Method (CFRDTM), Fadugba et al; (2021) 

carried out fractional numerical research on the 
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Advection-Dispersion Equation (ADE) with 

Fractional Order (FO). The Caputo Fractional 

Derivative (CFD) and the well-known 

Transform Method (RDTM) are combined to 

create CFRDTM. Using CFRDTM, a 

convergent series solution for ADE with FO is 

obtained. 

 In this research, our concern is to seek 

the numerical solution of the fraction order 

advection-dispersion equation with time- and 

space-fractional derivatives of the form: 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= −𝑣

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
+ 𝑘

𝜕2𝛽𝑢(𝑥,𝑡)

𝜕𝑥2𝛽
+ 𝑓(𝑥, 𝑡), 𝑡 > 0,   𝑥 > 0,    0 < 𝛼 ≤ 1, 0 < 𝛽 ≤ 1  (1) 

with initial conditions as  

𝑢(0, 𝑡) = 𝑓1(𝑡), 𝑢𝑥(0, 𝑡) = 𝑓2(𝑡),      (2) 

and boundary conditions 

𝑢(𝑥, 0) = 𝑔(𝑥),     (3) 

where 𝑢 is solute concentration, the positive 

constants 𝜐, 𝑘 represent the average fluid 

velocity and the dispersion coefficient, 𝑥  is the 

spatial domain, 𝑡 is time, and 𝛼 and 𝛽 are 

parameters describing the order of the time- 

and space-fractional derivatives, respectively 

and  𝑓(𝑥, 𝑡) is a source/sink term. The 

fractional derivatives are considered in the 

Caputo sense. Variables in the overall reaction 

expression specify which fractional derivatives 

to change in order to produce different 

reactions. The fractional equation becomes the 

traditional advection-dispersion equation 

(ADE) when α = β = 1. The macroscopic 

transport coefficients, υ and κ, determine the 

mean and variances of Gaussian density 

solutions, which will be the main solutions of 

the ADE over time. Using Mamadu-Njoseh 

polynomials as the basis, the Galerkin method 

will be used to derive the numerical solution of 

FOADEs.   

Caputo’s differential operator 

Definition 1. Suppose that 𝛼 > 0, 𝑥 > 0, 𝛼, 𝑥 ∈

𝑅. the fractional operator 
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𝐷∗
𝛼𝑓(𝑥) = {

1

Γ(n−α)
∫

𝑓(𝑛)(𝑠) 𝑑𝑠

(𝑥−𝑠)𝛼+1−𝑛
,

𝑥

0
           𝑛 − 1 < 𝛼 < 𝑛 𝜖 𝑁,

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥),         𝛼 = 𝑛 ∈  𝑁,

                                             (4) 

is called the Caputo fractional derivative or Caputo fractional differential operator of order 𝛼  

Definition 2: The Riemann-Liouville Fractional Derivative Operator (RLFDO) of 𝑓 (𝑡) is given by  

𝐷0 𝑡
𝛼𝑓(𝑡) =

1

Γ(n−α)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝜏)𝑑𝜏, 𝜏 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁 
𝑡

0
             (5) 

Definition 3: The Caputo Fractional Derivative (CFD) of 𝑓(𝑡) ∈ 𝐶−1
𝑛 , 𝑛 ∈ 𝑁 is given by 

𝐷0
𝑐

𝑡
𝛼𝑓(𝑡) =

1 

Γ(n−α)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛)(𝜏)𝑑𝜏,   
𝑡

0
for 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑡 > 0            (6) 

Definition 4: The Caputo Time-Fractional Derivative Operator (CTFDO) of order  𝛼 > 0 is as follows 

𝐷0
𝑐

𝑡
𝛼𝑢 = {

1 

Γ(n−α)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑢(𝑛)(𝑥, 𝜏)𝑑𝜏   𝛼 ∈ (0,1],
𝑡

0

𝜕𝑛u(x,t)

𝜕𝑡𝑛
,                                                     𝛼 = 𝑛

             (7) 

where 𝑛 is the smallest integer that exceeds 𝛼,

𝑢 = 𝑢(𝑥, 𝑡) and 𝑢(𝑛)(𝑥, 𝜏) = 
𝜕𝑛u(x,t)

𝜕𝑡𝑛
 

In the Caputo fractional differential equation, 

initial conditions have clear physical 

interpretation which is the main advantage of 

CFDO over RLFO. 

Definition 5: Let the function ℎ(𝑥) be 

differentiable and let 𝛼 be the order of the 

derivative. Then the caputo operator of the 

fractional derivative can be defined as follows 

(Sweillam and Khader, 2010):  

𝐷𝛼ℎ(𝑥) =
1

𝛤(𝑚−𝛼)
∫ ℎ(𝑚)𝑥

0
(𝑡)(𝑥 − 𝑡)𝑚−(𝛼+1)𝑑𝑡,   𝛼 > 0, 𝑥 > 0,                   (8) 

where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ. 

The Caputo operator is linear. Moreover, using 

Definition 4 to obtain the fractional derivative 

of the constant function 𝐾 and 

polynomials 𝑥𝑚 we have 

𝐷𝛼𝐾 = 0,𝐾is a constant. (9) 

 

𝐷𝛽𝑥𝑚 = {

0,                                                                 𝑚 ∈ {0,1,2, … , ⌈𝛼⌉ − 1},

Γ(m+1)

Γ(m+1−α)
𝑥m−α,   m ∈ ℕ ∧ m ≥ ⌈α⌉ or m ∉ ℕ ∧ m > ⌈α⌉ − 1

         (10) 
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where the ceiling function of 𝜏 is ⌈𝜏⌉ 
The Orthogonal Polynomials  

The orthogonal polynomials are class of 

polynomial 𝑝𝑛(𝑥) define over a range [𝑎, 𝑏] 

that obeys the orthogonality relation (Mamadu 

and Njoseh, 2016) 

Let ∫ 𝑤(𝑥)𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥 = ℎ𝑖𝛿𝑖𝑗
𝑏

𝑎
       (11) 

where 𝛿𝑖𝑗 is the Kronecker delta denoted by   𝛿𝑖𝑗 = {
0,           𝑖 ≠ 𝑗
1,           𝑖 = 𝑗

 

and the weight function 𝑤(𝑥) is continuous and positive on [𝑎, 𝑏] such that the moments  

𝑢 = ∫ 𝑤(𝑥)𝑥𝑖𝑑𝑥,      𝑖 = 0,1,2,3, …
𝑏

𝑎
            (12) 

exist.  

Thus the integral,   

〈𝜑𝑖, 𝜑𝑗〉 = ∫ ѡ(𝑥)𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥
𝑏

𝑎
             (13) 

is called the inner product of the polynomials 𝜑𝑖 and 𝜑𝑗, with the orthogonality property,    

〈𝜑𝑖, 𝜑𝑗〉 = ∫ ѡ(𝑥)𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥
𝑏

𝑎
= 0,   i ≠  j, x ∈ [−1,1] (14) 

𝐼𝑓 𝛿𝑖𝑗 = 1, then the polynomials are not only 

orthogonal but orthonormal.  Hence, we adopt 

the weight function 𝑤(𝑥) = 𝑥2 + 1  in the 

interval [𝑎, 𝑏] ≡  [−1,1] 

The construction of 𝜑𝑖, 𝑖 = 1,2,3, … of the 

approximant:  

𝑦̃ (𝑥)  = ∑ 𝑎𝑖𝜑𝑖(𝑥) ≅ 𝑦̃(𝑥)𝑎
𝑖   (15) 

then follows. 

Mamadu-Njoseh Polynomials (Njoseh and 

Mamadu, 2016a; 2016b; 2017a and 2017b)  

These are orthogonal polynomials constructed 

with respect to the weight function,  

𝑤(𝑥)  =  𝑥2 +  1, 𝑥 ∈ [−1,1] using the three 

properties: 

i. 𝜑𝑛(𝑥)  =  ∑ 𝐶𝑖
(𝑛)𝑛

𝑖=0 𝑥𝑖 ,  

ii.< 𝜑𝑚(𝑥), 𝜑𝑛(𝑥) >= 0,𝑚 ≠  𝑛, 

iii. 𝜑𝑛(𝑥)  = 1. 

where 𝜑𝑖, 𝑖 = 0,1,2,3, …  
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Mamadu-Njoseh Polynomials: Definition 

and Properties in Fractional Sense  

The Mamadu-Njoseh polynomials 

{𝜑𝑛
(𝛼)
(𝑥)}𝑛=0

∞ , 𝛼 ≥ 0, in the fractional sense, 

can be constructed using the following 

properties (Njoseh and Mamadu, 2016a; 

Mamadu and Njoseh, 2016; Ogeh and Njoseh, 

2019) 

𝜑𝑛
(𝛼)(𝑥) = ∑ 𝐶𝑟

(𝑛)𝑛
𝑟=0

𝑥𝑟

Γ(rα+1)
,    (16) 

〈𝜑𝑚
(𝛼)(𝑥), 𝜑𝑛

(𝛼)(𝑥)〉 = 0,𝑚 ≠ 𝑛     (17) 

 𝜑𝑛
(𝛼)(𝑥) = 1 + 𝛼 − 𝑥                 (18) 

These polynomials are orthogonal concerning the weight function 𝑤(𝑥) =
𝑥𝑟(1+𝑥2)

Γ(rα+1)
.  

The orthogonality relation is given as  

1

Γ(rα+1)
∫

𝑥𝑟(1+𝑥2)

Γ(rα+1)

1

−1
𝜑𝑚
(𝛼)(𝑥), 𝜑𝑛

(𝛼)(𝑥)𝑑𝑥 = (
𝑟 + 𝛼
𝑟

) 𝛿𝑚𝑛,  (19) 

where 𝛿𝑚𝑛 is the kronecter delta given as   

𝛿𝑚𝑛 = {
0
1

 

The polynomials also satisfy  

𝐷𝛼𝜑𝑛
(𝛼)(𝑥) = (−1)𝑎𝜑𝑛−𝑎

(𝛼+𝑎)(𝑥), 𝑎 = 0(1)𝑛.   (20) 

Let 𝑢(𝑥) ∈ 𝐿𝑤
2 [−1,1] such that it is integrable on [−1,1] with weight function 𝑤(𝑥), then it can be 

expressed in the series form  

𝑢(𝑥) = ∑ 𝑎𝑟
𝑁
𝑟=0 𝜑𝑟

(𝛼)(𝑥),                 (21) 

where 

Γ(rα + 1)

Γ(rα + 1 + α)
∫ 𝑥𝑟(1 + 𝑥2)
1

−1

𝜑𝑚
(𝛼)(𝑥), 𝜑𝑛

(𝛼)(𝑥)𝑑𝑥, 𝑟 = 0,1,2, … 

If we consider the first (𝑛 + 1) Mamadu-Njoseh polynomials, we can write  

𝑢𝑁(𝑥) ≅ ∑ 𝑎𝑟
𝑁
𝑟=0 𝜑𝑟

(𝛼)(𝑥)    (22) 
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The Approximate Formula of the Caputo 

Fractional Derivative of 𝜑𝑛
(𝛼)(𝑥). 

The main objective of this section is to propose 

relevant theorems to derive a precise 

approximate formula of the Caputo fractional 

derivative of the Mamadu-Njoseh polynomials. 

Lemma 1. (Mamadu et al; 2021 and Mamadu 

et al; 2022)  

Let  𝜑𝑛
(𝛼)(𝑥)be given, then  

𝐷𝑎𝜑𝑛
(𝛼)(𝑥) = 0, 𝑛 = 0,1,2, … , ([𝛼] − 1), 𝛼 > 0.                      (23) 

Proof. It follows directly from implementing 

the properties of the Caputo fractional 

derivative (9) and (10)  

Theorem 1. (Mamadu et al; 2021 and Mamadu 

et al; 2022) 

Suppose 𝛼 > 0 and 𝑢(𝑥) being the analytic 

solution approximated by the Mamadu-Njoseh 

polynomials as (16) then, its Caputo fractional 

derivative has the form  

𝐷𝑎(𝑢𝑁(𝑥)) ≅ ∑ ∑ 𝑎𝑚𝑤𝑖,𝑚
(𝛼)
𝑥𝑚−𝛼,𝑖

𝑚=[𝛼]
𝑁
𝑖=[𝛼]        (24) 

where  

𝑤𝑖,𝑚
(𝛼)

=
1

Γ(mα + 1 − α)
(
𝑖 + 𝛼
𝑖 − 𝑚

). 

Proof. Since the linear operation is valid for Caputo fractional differentiation, we have that  

𝐷𝛼(𝑢𝑁(𝑥)) ≅ ∑ 𝑎𝑟𝐷
𝛼𝑁

𝑟=0 𝜑𝑟
(𝛼)(𝑥).    (25) 

By lemma 1, we have that  

𝐷𝑎𝜑𝑛
(𝛼)(𝑥) = 0,           𝑛 = 0,1,2, … , ([𝛼] − 1), 𝛼 > 0. 

Thus, for 𝑛 = [𝛼], …N, by using (9) and(10)on (20), we have  

𝐷𝑎𝜑𝑛
(𝛼)(𝑥) = ∑

(−1)

Γ(mα+1−α)
(
𝑖 + 𝛼
𝑖 − 𝑚

)𝑥𝑚−𝛼𝑖
𝑚=[𝛼]    (26) 

Using (25) and (26) leads to the required results.  
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Numerical Solution of Fractional Order 

Advection-Dispersion Equation  

Our concern in this work is to consider the 

numerical solution of the fractional order 

advection-dispersion equation with time- and 

space-fractional derivatives of the form 

 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= −𝑣

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
+ 𝑘

𝜕2𝛽(𝑥,𝑡)

𝜕𝑥2𝛽
+ 𝑓(𝑥, 𝑡),  𝑡 > 0,   𝑥 > 0,    0 < 𝛼 ≤ 1,0 < 𝛽 ≤ 1  (27) 

with initial conditions as  

𝑢(0, 𝑡) = 𝑓1(𝑡) 

𝑢𝑥(0, 𝑡) = 𝑓2(𝑡)      (28) 

𝑢(𝑥, 0) = 𝑔(𝑥) 

Using the proposed method, we first approximate the power series solution for (27) as, 

𝑦̃𝑛(𝑥) = ∑ 𝑎𝑟𝜑𝑟(𝑥)
𝑛
𝑖=0       (29) 

where 𝑎𝑟 , 𝑟 = 1,2, … , 𝑛, are constants to be determined,  𝜑𝑟(𝑥), 𝑟 = 1,2, … , 𝑛 are the Mamadu-Njoseh 

polynomial. 

The implementation of the Galerkin method is aided by the following steps: 

i.  Substitute (29) into (27) to obtain 

      
𝜕𝛼

𝜕𝑡𝛼
(∑ 𝑎𝑟𝜑𝑛(𝑥)

𝑛
𝑖=0 ) = −𝑣

𝜕𝛽

𝜕𝑥𝛽
(∑ 𝑎𝑟𝜑𝑛(𝑥)

𝑛
𝑖=0 ) + 𝑘

𝜕2𝛽

𝜕𝑥2𝛽
(∑ 𝑎𝑟𝜑𝑛(𝑥)

𝑛
𝑖=0 ) + 𝑓(𝑥, 𝑡),                     (30) 

ii. Multiply both side of (30) by 𝜑𝑗(𝑥), 𝑗 = 0,1,2, … , 𝑛, and integrate within the interval [𝑎, 𝑏] with 

respect to 𝑥, that is,  

∫ (
𝜕𝛼

𝜕𝑡𝛼
(∑𝑎𝑟𝜑𝑛(𝑥)

𝑛

𝑖=0

))𝜑𝑗(𝑥)𝑑𝑥
𝑏

𝑎

 

                       = ∫ (−𝑣
𝜕𝛽

𝜕𝑥𝛽
(∑ 𝑎𝑟𝜑𝑛(𝑥)

𝑛
𝑖=0 ) +

𝜕2𝛽

𝜕𝑥2𝛽
(∑ 𝑎𝑟𝜑𝑛(𝑥)

𝑛
𝑖=0 ) + 𝑓(𝑥, 𝑡))

𝑏

𝑎
𝜑𝑗(𝑥)𝑑𝑥       (31) 

iii. Write equation (31) in the matrix form 
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𝐴𝑋 = 𝑏𝑥                              (32) 

where 

𝐴 = 𝑎𝑖𝑗 = ∫ (
𝜕𝛼

𝜕𝑡𝛼
(∑𝑎𝑟𝜑𝑛(𝑥)

𝑛

𝑖=0

) + 𝑣
𝜕𝛽

𝜕𝑥𝛽
(∑𝑎𝑟𝜑𝑛(𝑥)

𝑛

𝑖=0

) −
𝜕2𝛽

𝜕𝑥2𝛽
(∑𝑎𝑟𝜑𝑛(𝑥)

𝑛

𝑖=0

))𝜑𝑗(𝑥)𝑑𝑥
𝑏

𝑎

 

𝑥 = 𝑥𝑖 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)
𝑇 

𝑏 = 𝑏𝑗 = ∫ 𝑓(𝑥, 𝑡)
𝑏

𝑎

𝜑𝑗(𝑥)𝑑𝑥,   𝑗 = 0(1)𝑛 

Solve the above system (32) using the 

Gaussian elimination method to obtain value of 

𝑎𝑖, 𝑖 = 0(1)𝑛. 

Substitute the values of the 𝑎𝑖, 𝑖 = 0(1)𝑛, into 

(29) when 𝛼 = 2, 𝛽 = 1 to obtain the 

approximate solution. 

Numerical Examples  

We present some numerical 

computation for the solution of fractional order 

advection-dispersion equation with time- and 

space-fractional derivatives using the Galerkin 

method with Mamadu-Njoseh basis functions. 

The resulting numerical solution obtained with 

the method are then compared with the exact 

solution (as available in literature), these are 

presented in tables and graphs for convergence 

interpretation. 

The error formulation for each of these 

problems is defined explicitly as     

ur = |u(x, t) − ur(x, t)|,  r = 1,2,3, …,        (33) 

where u(x, t) is the analytic or exact solution, 

and  ur(x, t) is the computed solution using the 

modified variational iterative scheme.  

Example 1 

Consider the fraction order advection-

dispersion equation with time- and space-

fractional derivatives of the form 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
=

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
−

𝜕2𝛽𝑢(𝑥,𝑡)

𝜕𝑥2𝛽
+ 𝑥 − 2t, 𝑡 > 0,   𝑥 > 0 ,               (34) 

𝑢(0, 𝑡) = 2𝑡2, 𝑢𝑥(0, 𝑡) = 𝑥 − 𝑡, 𝑢(𝑥, 0) = 0, 
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with exact solution 𝑢(𝑥, 𝑡) = 𝑥2𝑒−2𝑡. 

Following the steps in Section 6.0, we obtain the computational results in Table1. 

Table1: Table of Results obtained for Example1 for 𝑡 = 0.1. 

𝒙 Exact Solution Galerkin Method 

𝜶 = 𝜷 = 𝟎. 𝟓 

Galerkin Method 

𝜶 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟔 

Galerkin Error 

𝜶 = 𝜷 = 𝟎.𝟓 

Galerkin Error 

𝜶 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟔 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.0081873075 

0.0327492301 

0.073.6857678 

0.1309969205 

0.2046826883 

0.2947430711 

0.4011780690 

0.5239876820 

0.6631719100 

0.8187307531 

0.0000000000 

0.0081866667 

0.0327466667 

0.0736800000 

0.1309866667 

0.2046666670 

0.2947200000 

0.4011466667 

0.5239466667 

0.6631200000 

0.8186666667 

0.0000000000 

0.0081871064 

0.0327491112 

0.0736856655 

0.1309957114 

0.2046805662 

0.2947411520 

0.4011751450 

0.5239854300 

0.6631705200 

0.8187305322 

0.0000000000 

6.40864 × 10−7 

2.56345 × 10−6 

5.76778 × 10−6 

1.02538 × 10−5 

1.60216 × 10−5 

2.30711 × 10−5 

3.14023 × 10−5 

4.10153 × 10−5 

5.190999 × 10−5 

6.40864 × 10−5 

0.0000000000 

2.0111 × 10−7 

1.189 × 10−7 

1.0224 × 10−7 

1.2091 × 10−6 

2.1221 × 10−6 

1.9189 × 10−6 

2.924 × 10−6 

2.252 × 10−6 

1.39 × 10−6 

2.209 × 10−7 

 

 

Figure 1: Comparison of Exact and Approximate Solutions for Example 1 at 𝛼 = 𝛽 = 0.5. 
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Figure 2: Comparison of Exact and Approximate Solutions for Example 1 at 𝛼 = 0.5, 𝛽 = 0.6. 

 

Example 2  

Consider the fraction order advection-dispersion equation with time- and space-fractional derivatives 

of the form 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= −2.5

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
−

𝜕2𝛽𝑢(𝑥,𝑡)

𝜕𝑥2𝛽
+ 𝑥𝑡, 𝑡 > 0,   𝑥 > 0 ,                  (35) 

𝑢(0, 𝑡) = 𝑡, 𝑢𝑥(0, 𝑡) = 1, 𝑢(𝑥, 0) = 1. 

The exact solution is  

𝑢(𝑥, 𝑡) =
𝑥

1−𝑡
. 

Following the steps in Section 6.0, we obtain the computational results in Table 2. 

Table 2: Table of Results obtained for Example 2 for 𝑡 = 0.1. 

𝒙 Exact Solution Galerkin Method 

𝜶 = 𝜷 = 𝟎. 𝟓 

Galerkin Method 

𝜶 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟔 

Galerkin Error 

𝜶 = 𝜷 = 𝟎. 𝟓 

Galerkin Error 

𝜶 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟔 
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0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0000000000 

0.1111111111 

0.2222222222 

0.3333333333 

0.4444444444 

0.5555555555 

0.6666666667 

0.7777777778 

0.8888888889 

1.0000000000 

1.1111111111 

0.0000 

0.0900 

0.1800 

0.2700 

0.3600 

0.4500 

0.5400 

0.6300 

0.7200 

0.8100 

0.9000 

0.0000000000 

0.0960236464 

0.1920472928 

0.2880709391 

0.3840945855 

0.4801182319 

0.5761418783 

0.6721655247 

0.7681891710 

0.8642128174 

0.9602364638 

0.0000000000 

0.0211111111 

0.0422222222 

0.0633333333 

0.0844444444 

0.1055555556 

0.1266666667 

0.1477777778 

0.1688888889 

0.1900000000 

0.2111111111 

0.0000000000 

0.0150874647 

0.0301749294 

0.0452623942 

0.0603498589 

0.0754373237 

0.0905247884 

0.1056122531 

0.1206997180 

0.1357871826 

0.1508746473 

 

 

 
Figure 3: Comparison of Exact and Approximate Solutions for Example 2 at 𝛼 = 𝛽 = 0.5. 

 

 
Figure 4: Comparison of Exact and Approximate Solutions for Example 2 at 𝛼 = 0.5, 𝛽 = 0.6. 
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Convergence Analysis 

Theorem 4.1 (Mamadu and Njoseh, 2016) 

Let  

𝐹(𝑢) =
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡), 𝑡 > 0,   𝑥 > 0,    0 < 𝛼, 𝛽 ≤ 1. 

Then the proposed method convergences if the following conditions are satisfied: 

i. (𝐹(𝑢) − 𝐹(𝑣), 𝑢 − 𝑣) ≥ 𝑘‖𝑢 − 𝑣‖2, 𝑘 > 0, 𝑢, 𝑣 ∈ 𝐻,𝐻 𝑖𝑠 𝑎𝑛 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒. 

ii. For a > 0, ∃ 𝑔(a) > 0 such that ‖𝑢‖ ≤ a, ‖𝑣‖ ≤ a, 𝑢, 𝑣 ∈ 𝐻 then 

(𝐹(𝑢) − 𝐹(𝑣), 𝑢 − 𝑣) ≥ 𝑔(a)‖𝑢 − 𝑣‖‖𝑏‖,   𝑏 ∈ 𝐻. 

Proof: 

For 𝑘 > 0, 𝑢, 𝑣 ∈ 𝐻, we have 

(𝐹(𝑢) − 𝐹(𝑣), 𝑢 − 𝑣)

= ((
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))

− (
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))) , 𝑢 − 𝑣)  

where  

𝐹(𝑣) = (
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡)). 

Applying the Schwartz inequality, we get 
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((
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))

− (
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡)) , 𝑢 − 𝑣) 

≤ 𝑘1 ‖(
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))

− (
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))‖ ‖𝑢 − 𝑣‖. 

Using the mean value theorem we obtain 

(((
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥,𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥,𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡)) − (

𝜕𝛼𝑣(𝑥,𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥,𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥,𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡)))) ≥

𝜀‖𝑢 − 𝑣‖2.  

where 𝜀 = 𝑘1a
2 

Hence, 

(𝐹(𝑢) − 𝐹(𝑣), 𝑢 − 𝑣) ≥ 𝑘‖𝑢 − 𝑣‖2 

holds with 𝜏 = 𝑘1a
2. 

Also, for a > 0, ∃ 𝑔(𝑎) > 0 such that ‖𝑢‖ ≤ Ω, ‖𝑣‖ ≤ Ω, 𝑢, 𝑣 ∈ 𝐻, then 

(𝐹(𝑢) − 𝐹(𝑣), 𝑏)

= ((
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑢(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡))

− (
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑣

𝜕𝛽𝑣(𝑥, 𝑡)

𝜕𝑥𝛽
− 𝑘

𝜕2𝛽𝑣(𝑥, 𝑡)

𝜕𝑥2𝛽
− 𝑓(𝑥, 𝑡)))  

≤ k2‖𝑢 − 𝑣‖‖𝑏‖ 𝑔(𝑎)‖𝑢 − 𝑣‖‖𝑏‖, 
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which satisfies the second condition.  

Discussion of Results 

The independent variable 𝑡 was fixed at 𝑡 = 0.1 and 

values where obtained for the Galerkin method with 

Mamadu-Njoseh basis functions for 𝛼 = 𝛽 = 0.5, 

and = 0.5, 𝛽 = 0.6, in the Tables1 and 2 

respectively. The value of 𝑥 was taken between 0 

and 1 (with steps of  0.1). For each value of 𝑥 

considered, Galerkin method with  𝛼 = 𝛽 = 0.5  

gave less error when compared with same Galerkin 

method with 𝛼 = 0.5, 𝛽 = 0.6 taking the exact 

solution as benchmark. In the Table 1, it was 

generally observed that Galerkin method 𝛼 = 𝛽 =

0.5  posed an average error of 2.46732584 × 10−5 

over the interval considered, and Galerkin method 

with 𝛼 = 0.5, 𝛽 = 0.6  posed an average error of 

1.020725 × 10−6 over the same interval. 

Furthermore, in Table 2, Galerkin method with 𝛼 =

𝛽 = 0.6generated an average error of 

0.08298105603 and Galerkin method with 𝛼 = 0.5,

𝛽 = 0.6 and average error of 0.1161111111 within 

the same interval. Thus, in both cases the Galerkin 

method proved to be accurate and converges 

significantly for the models considered. 

Conclusion 

It is important to note that numerical methods 

are used to resolve all mathematical 

formulations or constructions since many 

known analytic methods are difficult to resolve 

in real sense. Thus, our results have shown that 

the new iterative scheme Galerkin method with 

Mamadu-Njoseh basis functions encourages 

rapid convergence for the fractional order 

advection-dispersion equation with time- and 

space- derivatives. On the basis of our analysis 

and computation we strongly advocate that the 

Galerkin method with Mamadu-Njoseh basis 

functions as decomposer of nonlinear terms in 

partial differential equations, and any other 

mathematical equation be encouraged as a 

numerical method.  
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