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This paper examines the consistency that surrounds the Multivariate Quiweight product kernel function 

in achieving a better curve estimate and the target density.  In revealing its features in the area of 

Multivariate Kernel Density Estimation of data, we adopted the Multivariate KDE product estimator to 

ascertain its generalized consistency expressions. This was done via the Taylor series expansion for all 

its higher order forms of   dimensions.  The expressions that were established are subject to real life 

data simulations of different sample sizes based on the dimensions that emanated from the Multivariate 

Quiweight product kernel functions; the data  analysis showed that it has a smaller bias and variance 

which influences its global performance as the Multivariate Quiweight product kernel function order 

and m dimensions increase.  

 

Key words: AMISE; Beta Kernel, Consistency, Smoothing Parameter, Pentaweight, Product Kernel. 

 

 

INTRODUCTION 

The theoretical emphasis of kernel density 

estimation (KDE) focused on the various areas 

of estimating features that are related to the 

kernel functions in decades of its inception 

(Rosenblatt, 1956).  In recent research studies, 

it has become the hub of nonparametric density 

estimations due to the giant strides applications 

in Biological Sciences, Econometric, Statistical 

Engineering, Statistical modeling, kernel 

regressions etc.  The estimator exists in both 

univariate and multivariate forms with 

distinguished factors of the smoothing 

parameter, sample size compositions and the 

kernel functions, wherein the smoothing 

parameter is a unifying factor that determines 

the contour of the data in both forms 

(Silverman, 1986).  The implication is that, the 

univariate form is an extension to several 

dimensions to birth the multivariate kernel 

form which ranges from the Bivariate; 

Trivariate; Quadrivariate etc dimensional data 

for visualization projections (Scott, 1992). 

The multivariate density estimation has helped to 

reduce the problem of curse-of-dimensionality in 

the one dimensional univariate kernel density 

estimation whose statistical properties deteriorate 

very fast especially in higher order dimensions 

(Peracchi, 2014).  Let *  +   
  be a sample from 

the independent and identical distribution of a 

random m-vector Z with density function 

 ( )   (       ) , then the multivariate 

generalization of the univariate kernel density 

estimation is given as: 

 

                                                                           (1) 

 

where     
    is a multivariate kernel 

function and   is called the smoothing parameter, 

   is a sequence of continuous random m-vector 

,which has a continuously differentiable density   

twice (Deheuvels, 1977; Hensen, 2003; Doung 

and Hazelton, 2003). This multivariate kernel  
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density estimator in compact form is expressed 

as: 

 

                 (2) 

where the sequence of the smoothing parameter 

*  +  with the multivariate kernel     
    

satisfies the following axioms: 

 

                                         (3) 

 

And the    denotes the     identity matrix 

while the multivariate kernel norm is ‖  ‖ 
  

∫  
 (𝑢) 𝑢   which adopts the smoothing 

parameter parameterization        (Oyegue 

and Ogbonmwan, 2014).  The estimate of   ( ) 
is measured by the asymptotic mean integrated 

squared error (AMISE) using the Taylor’s 

series expansion that is composed of the 

asymptotic integrated squared bias (AISB) and 

the asymptotic integrated variance (AIV) given 

as: 

 

                    (4) 

 

where  ( )  represents the roughness of the 

multivariate kernel function,   ( )
  is the 

variance of the kernel function and  (   ) is 

the roughness of the unknown probability 

density function (Guidoum, 2015; Siloko et al. 

2019).  The conjugation of both terms in 

Equation (4) will produce the estimate of the 

asymptotic mean integrated squared error 

(AMISE). This leads to a closed solution form 

when the AMISE takes the objective function 

whose minimization with respect to the 

smoothing parameter (  ) will yield optimal 

smoothing parameter expressed as: 

 

                                         
                                                                       (5) 

The optimal smoothing parameter in Equation 5 

decreases at order (−    ⁄ )  and the optimal 

AMISE decreases at order (−    ⁄ ).   
 

The Multivariate Product Kernel Functions 

Two approaches are used for the transformation 

of a univariate kernel function into a multivariate 

kernel functions: Product and Radial multivariate 

kernel (Scott, 1992; Wand and Jones, 1995); the 

Multivariate product kernel density approach is 

given as: 
 

             
                                                                           (6) 
 

In generating the univariate classical kernel 

functions and subsequent higher order kernel 

forms we adopt the modified construction rule of 

Ejakpovi et al. (2019), where the kernel order 

denoted by   takes 3, 4, 5 and 6 called Triweight, 

Quadriweight, Quiweight and Hexweight, 

respectively. And, their generalized univariate 

higher order kernel function of the Multivariate 

product is formed, as: 
 

                  (7) 
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  (𝑡) =  

35
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(1 − 𝑡2)3
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And  

 

                           (8) 

             

where    
 (𝑡) denotes the m-dimensions of the 

Multivariate product kernel function for any 

classical kernel function using Equation 7 and 

 
 

 
 
   

is the normalization factor. 

 

Generalized L2-consistency asymptotic 

expressions 

The consistency theory of the Multivariate 

estimator helps to achieve the discrepancy 

criterion that gives the measure of performance 

of the estimator in Equation 2.  The 

Mathematical tractability of the generalized 

consistency asymptotic expressions seeks the 

Taylor’s series expansion of orders ( 𝑗   )  
for the asymptotic integrated squared bias and 

asymptotic integrated variance of the 

Multivariate product estimator of Equation 6.  

 

Its combination yields the generalized asymptotic 

mean integrated squared error (AMISE) 

expression.  The minimization when the AMISE 

is considered as the objective function with 

respect to the smoothing parameter gives a 

differential equation whose closed solution is the 

optimal asymptotic smoothing parameter for the 

Multivariate product kernel functions.  When the 

asymptotic smoothing parameter whose value is 

plugged into the 𝐴  𝑆     ( )  expression to 

produce the generalized L2-consistency of the 

Multivariate product estimator to any m 

dimensions with the best convergence rate of the 

𝐴  𝑆     (   )  is   𝑛
 (    )

      ⁄
   then  

the mean of global discrepancy of the 

Multivariate product estimator is expressed as: 

 

 

                   (9) 

 

 where   is an arbitrarily quotient factor of the 

Multivariate Quiweight kernel function in 

Equation 8 when     for m dimensions; 

 (    )
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‖   
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   and          

∑
     

   

 
    ( )  which is achieved from the 

data distribution. 

 

Data implementation 

generalized Multivariate product estimator for the 

Multivariate Quiweight product kernel function 

whose Mathematical expressions are in section 3.  

Bivariate data of a sample size of two hundred 

and were used for the simulations; they represent 

skin elasticity measurement and Strength Data for 

Polymerization Process Study (Mason, Gunst and 

Hess, 2003) under a Mathematical software using 

Equation 9: 

 

Here, we shall examine the performance of the  
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DISCUSSIONS 

The results displayed in data implementations 

vividly indicate the performance of the 

Multivariate Quiweight product kernel function 

on the bivariate data based on the 

homoscedascity of the data.  The simulations 

showed that as the dimensions increase, the 

Multivariate Quiweight product functions 

performances decrease, except in dimensions 

five and six when their estimates tend to 

increase at some orders.  The implications of 

this to the data is that in attempting to get a 

closer estimate of Skin Elasticity and Strength 

Data for polymerization process, the 

Multivariate Quiweight product kernel unction 

dimension one and two gave a better estimate 

of the Skin Elasticity measurement and 

Strength Data for polymerization process. This 

is because their estimates have a minimum 

discrepancy values from their true or 

underlying density.  Though dimensions three, 

four, five and six also project the estimates but 

with little higher values compared to 

dimensions one and two. This implies that the 

Multivariate Quiweight product kernel function 

estimates with little higher values which 

clearly indicate that the Skin Elasticity 

measurement and Strength Data for 

polymerization process cannot be truly relied 

on. This is due to breakage or inelasticity of 

Skin or inadequate Strength of Data for 

polymerization process at these dimensions. 

These now give credence to dimensions one 

and two. 

 

 

Conclusion 

This paper examines the consistency theory of 

the Multivariate Quiweight product kernel 

function at generalized perspectives; its 

performance helps in determining the level of 

dimensions for better estimates of Skin Elasticity 

measurement and Strength Data for 

polymerization process as shown in the data 

visualization.  Then, it becomes obvious that this 

consistency theory should be applied to areas of 

reliability study of events, possible forecasting of 

events in the field of regressions and otherwise. 

Also, the need to extend this generalized L2-

Consistency theory to the Multivariate Quiweight 

radial kernel function and its applications to real 

life situations is a grey area for further research 

study.  
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