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This study concerns the kinematic manifestations exhibited among marine parameters. This is more 

identified when the sea body varies slowly. Wave group speed is described in this study due to its 

obvious relation with wave group energy fluxes. Wave group speed is one of the parameters of ocean. 

On a slowly varying ocean, the evolution of wave group velocity is governed by the kinematic quasi-

linear differential equation; thus, it follows the characteristic lines with their inherent inter- crossing, 

which may lead to the development of shock waves in the process. In the event of sea waves with large 

amplitudes, extreme growth that describes wave group velocity increases the energy fluxes in the 

process. The behavior of the group wave velocity established in this analysis modifies the wave 

amplitude growth but also increases the wave energy fluxes significantly.  The situation may increase 

the destructive tendency which is usually observed. This is likely followed by the appearance of the 

induced large amplitude sea wave train and associated enhanced energy fluxes. 
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INTRODUCTION 

Kinematic theory is widely involved in the 

study of marine physical phenomena. These 

include those that can be classified as highly 

complex in their manifestations. These are 

analyzed effectively by employing the methods 

of characteristics developed by Light hill and 

Whitham (1955). The important ideas provided 

by this method may explain some important, 

physical manifestations associated with 

hyperbolic shockwave events with all their 

generalizations. The remarkable fact is that 

both progressive distortion of wave profile and 

related development of discontinuity in wave 

profile are typical non -linear developments 

that are product of wave kinematic behaviors. 

It has been established (Ifediora, 2015) 

that ocean wave parameters are kinematic in 

behavior through their physical manifestations. 

Some of these parameters are wave frequency, 

wave number, and wave phase and group 

velocity, respectively. This is always the case 

in the ocean body that is slowly varying in time 

and space (Okeke, 2020). Group wave velocity is 

essentially among the leading factors in the 

consideration of the energy fluxes in wave group 

propagations. Consequently, an interesting and 

essential property is introduced in this study. This 

is the effect of wave group velocity that is a 

kinematic parameter and at the same time, the 

propagation speed of a wave group energy fluxes. 

Discussions on this will follow subsequently. 

 

Velocity V(x, t)  associated with the dominant 

wave group 

The wave process is described in (x, t) coordinate 

system. Accordingly, the wave front is moving 

such that x-axis is perpendicular to it; t is the time 

duration. Take the successive crest elevation as 

  (   )  𝑑   (   ) . The total momentum, M, 

between the elevations per unit volume is, 

 

                                        (1) 

𝑀 = 𝜌  𝑉( ,  )𝑑 ,    

 1

 2
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The rate of change 𝑀  with t (using Leibnitz 

rule) provides that. 

 

                   (2a) 

 

As The development appears to suggest that 

dominant group velocity can be described in 

the context of kinematic consideration 

(Whitham, 2002). Alternatively, use total 

derivative to obtain, 

 

                                 (2b) 

 

Thus, along the characteristic line joining the 

point (   )  𝑑 (   ) (    𝑒      )  

 
Thus,  𝑉( ) is constant along the straight line 

joining the points (   )   𝑑 (   )  being a 

characteristic line. The characteristic curve for 

equation (2a) is as follows: 

 

 
 

With  𝑉(   )   𝑓( )as initial Cauchy data. 

When t = 0, x =     =   and thus, 

 

                                             (3) 

 

                                             (4) 
 

Equations 3 and 4 represent the equations of 

the characteristics for Equation 2. 

From Equation 3, we have: 

 

      (5) 
 

and 

                    

     (6) 

Equation 4 provides the following: 

 

(i)                (7) 

 

(ii)         (8) 

 

If 𝑉 ( ) is negative,    
 

  ( )
, suggesting the 

time for the commencement of singular behavior 

that describes the solution of the kinematic 

Equation 2a. 

 

Intersection of characteristic lines 

Consider two characteristics originating from two 

points on x – axis namely (   ) and (   ). The 

equations are: (    ) 

                   (9a,b) 

       𝑑 𝑉( )   𝑉 ( ) 

Thus,
 

 ( )
 

 

 ( )
  hence, the two lines will 

intersect and this gives rise to the singular 

solution at     , where  

 

                                           (10) 

Since 𝑉(  )   𝑉( )      

 

Equation 10 provides the time      for the on-

set of shockwave manifestation in the quasi-linear 

kinematic process. The physical reality is that the 

picture is not as simple as it appears. Instead, we 

have a family of characteristic lines intersecting 

and inter- crossing among themselves. The 

development may give rise to extreme large 

amplitude wave train. It is important to mention 

this fact in marine physics. In the framework of 

the frequency modulated wave train evolution, 

characteristic lines and rays are identical in their 

physical representations and in water wave 

theory. 

 

Various forms of initial data 

 

(i)                 (11) 

 

The solution of Equation 2 is of the form in this 

case through Equations 3 and 4 

𝜌 = 𝑐  𝑠     𝑑𝑒 𝑠𝑖 𝑦 

𝑑

𝑑 
 𝑉( ,  )𝑑 =   

𝜕𝑉

𝜕 
𝑑 +  1 𝑉( ,  

 1

 2

 1

 2

)   2 𝑉( 2,  ) =  0. 

 1 →  2  ,      
𝜕𝑉

𝜕 
+  𝑉

𝜕𝑉

𝜕 
= 0.                                               

𝑑𝑉

𝑑 
= 𝑉 +  𝑉 𝑉 = 0 .                                                                                            

𝑉( ,  ) =  𝑉( , 0) = 𝑉( ) =  𝑐  𝑠    .                              

𝑑 = 𝑉( )𝑑 ,  =  𝑉( ) +  0,  

 =  +  𝑉( ),                                                                                                 

𝑉( ,  ) =  𝑓( ).                                                                                               

 

 1 =    +   𝑉1( )  =     1 +  𝑉( )  ,                                                               

0 =    +  𝑉( ) +   𝑉1( )  = 𝑉( ) +   (1 +  𝑉1). 

  =
 𝑉( )

1 +  𝑉1( )
 ,        =     

1

1 +  𝑉( )
.    

𝑉 = 𝑓1( )  =
𝑓1( )

1 +  𝑉1( )
.          

𝑉 = 𝑓1( )  =  
 𝑓1( )𝑉( )

1 +  𝑉1( )
.                                                                          

 =   +  𝑉( ),  =   +  𝑉( )                                                                          (9 , 𝑏) 

 0 =
 (   )

𝑉( )  𝑉( )
                                                                                               (10) 

(𝑖)       𝑓( ) =   , 0 <  <  ∞,    = 0.           
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                                                 (12a) 

                                         (12b) 

 

Even with the simple linear initial data (11), 

𝑉(   )  is still explosive when      , 

however t    in Equation 11, hence 𝑉(   ) is 

smooth. 

 

(ii)   

 

In this case, the solution of Equation 2 is of the 

form, 

𝑉( )                                                                    (  ) 
 

 
  
                                                                  (  ) 
 

We need to solve for   in Equation 14. 

To obtain complete analytical solution for 

Equation 14, take 

       
  

 
   (  )  

Therefore Equation 13 gives: 

 

𝑉( )  

  
  

 
                                                                (  ) 

 

Equation  14 provides: 

 
That is , 

                          (16) 

  
  [    (   )]

  
 

 
But, is real value of x. This condition implies 

that        .  

Subsequent calculations are based on this 

assumption. 
 

                                                                     (17)    

                                            (18) 

 

Figure 2 appears to suggest an unexpected growth 

of an initial pulse, modeled with first two terms 

of cosine series expansion. This is exceptionally 

high for the non – dimensional time t = 5 if 12 s 

wave dominant group is considered as it appears 

in Figure 2. 

 

 

 
 

Figure 1. Inter-crossing of two characteristic lines or rays. 

 

 

 
 

Figure 2. Propagation of initial pulse.  

 

  

                  
The parameterized approach  

Consider the case in which the physical process 

described by the Equation 2 is induced by a unit 

source. Thus, 

 

                                      (19a) 

 

Choose  and  (  ) such that when     

  𝑉                  and 

                      (19b) 

  𝑉( ) =   ,  =   +   ,      𝑓   𝑤𝑕𝑖𝑐𝑕, 

 =
 

1 +  
  .                                                                                                                     (12 ) 

 

𝑉( ,  ) =
 

1 +  
 .                                                                                                          (12𝑏) 

 =
 

1 +  
  .                                                                                                                     (12 ) 

 

𝑉( ,  ) =
 

1 +  
 .                                                                                                          (12𝑏) 

(𝑖𝑖)      𝑓( ) = cos  , 0 <  <  ∞,          

 =   +   1  
 2

2
 .                                                                                               

  2  2 + 2(   ) = 0 .                                                                                   (16)  

1

 
*1 ±  1   (   ) 

1 2 
+ =

1

 
[1 ±  1   +  2)1 2   

 2 =
1

 2
 [2   (   )] + 2(1   (   )2)1 2                                              (17) 

𝑉( ,  ) =  1  
 2

2
                                                                                                     (18) 

representations and in water wave theory. 

 

 

 

 

 

 

Fig. I: Inter-crossing of two characteristic lines or rays 

 

(   ) (   ) 

(  (     )

   )

(     ) 

t 

 

  

𝑉 +  𝑉𝑉 = 1.                                                                                                (19 ) 

𝑑 

1
=
𝑑 

𝑉
=
𝑑𝑉

1
= 𝑑 .                                                                                     (19𝑏) 
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From Equation  19a, and b is the equation of 

characteristics for (19a). 

Thus,   𝑑𝑉  𝑑  𝑉      𝑤𝑕𝑒        
    for which 

 

V =  + 

                                                                      (   𝑐) 
 

dt = 𝑑 , t =     when      B = 2, for 

which 

 

  = 2 + 

                                                                                                           (  ) 
dx = 𝑉𝑑  = ( +  ) 𝑑   

     
 

 
      𝑤𝑕𝑒           

Then B =  and  

 

 

 
 

 
      

                                                                       (  ) 
 

The exercise now is to determine  and   using 

Equation 20 and 21 as functions of x and t, 

hence, 

𝑉  𝑉(   ), using Equation 19c 

From Equation 20 and 21,   =   + 2,   =   - 

2. 

 

Thus, 

 (   )  
(   )                                                       (  ) 
 

Again, from Equation 20 and 21, 

 

     
  ( 
  )                                                                    (  ) 
 

Thus, 

  
    

   
                                                          (  ) 

 

From Equation  22 

 

                     (   ). 
 

 
 (

 

      )

(   )
                                                  (  ) 

 

From  Equation 19b. 

Finally , 

 

 𝑉(   )       
    

   
 

     

 (   )
. 

𝑖 𝑒 𝑉(   )

 
 

 (   )
[     

    ]                                                                      (  ) 
 

Figure 3 suggests the profile of  𝑉(   ) . The 

apparent explosive behavior of the characteristics 

describing an identical kinematic process 

illustrates the singular tendency introduced by the 

factor     in the denominator of Equation 26 

and is clear in Figure 3. Furthermore, as  →
∞      → ∞ 𝑉(   ) → ∞ . Thus, the process 

has no finite upper bound suggesting an eventual 

explosive solution. This can give rise to large 

amplitude shock phenomena which may be of 

physical significance (Petrova, 2007; Polnikov, 

2008) in marine physics. 

 

 

 
 

Figure 3. The Profile of  𝑉(   ) in the space- time coordinate 
system. 
 

 

Modulating wave train with high crest 

elevation 

We discuss the critical, though interesting, role 

associated with group velocity 𝑉(   )  in the 

development of sea wave train with extreme high 

crest elevation. In this consideration, we shall 

employ the above discussion to describe some of 

the dynamical features in these marine processes. 

These processes include those that exhibit  

𝑖. 𝑒 𝑉( ,  ) =
1

2(  1)
[2 +  2   2 ]    .                                                                 (26) 

 

     t 

 

            2 

 

                       𝟏 

 

   0        x 

 

 

Fig. III: The Profile of  𝑉( ,  ) in the space- time coordinate system. 

Fig III suggests the profile of  𝑉( ,  ). The apparent explosive behavior of the characteristics 

describing an identical kinematic process illustrates the singular tendency introduced by the  



 

Nigerian Journal of Science and Environment, Vol.18 (2) (2020) 
 

extreme behavior in their physical 

manifestations. The wave group velocity 

𝑉(   ) in this consideration plays a dominant 

role in water wave dynamics. At this starting 

point, we mention the role associated with 

𝑉(   ) very briefly in the following 

considerations. Then, we incorporate this in 

our conclusion. For details, see for example, 

Kundu (1990) and Stokes (1957). The first 

order wave field potential  (     )  is 

described by the fluid representation for 

irrotational and un compressible fluid (Stoker, 

1957): 

 

 
                                                                     (27) 

 
   = wave amplitude or crest elevation, z is the 

vertical coordinate normal to x- axis, h = the 

water depth measured from undisturbed sea 

surface,   = wavedominant frequency with 

wave number k, g is the acceleration due to 

gravity. The linear form of Bernoulli’s 

equation for the linear pressure wave  (     ) 
provides, 

 
 (     )

   𝜌
𝜕 

𝜕 
                                                           (  ) 

 
We have neglected the nonlinear term and 

atmospheric forcing term in equation (28). The 

energy flow   per unit area in the fluid is 

provided by, 

 

 
𝜕 

𝜕 
                                                                       (  ) 

 
  

  
 = horizontal fluid particle velocity 

component 

The total energy flow through the vertical –h < 

z < 0 and of unit width is given by: 

 

      

 

  

  𝑑                                                    (   ) 

 
From Equations 27 and 30 

 
 

But 

𝑉  
 

 
(  

   

        
)                                                (  𝑐) 

 

Where c is the phase speed associated with 

component wave mode, 

    (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 

 
. 

The bar indicates the statistical mean over a wave 

length or period (
  

 
   

  

 
)  

From Equation 30b) using Equation 30c 

 

 ̅

 
𝜌𝑔  

 

 
𝑉(   )                                                    (  ) 

 

Equation 31 is the expression for the average 

energy transmission in a sinusoidal wave group. 

 

Thus, ̅   𝑒𝑉                                                       (  ) 
𝑒     𝑒  𝑖    𝑖 𝑒 𝑖𝑐 𝑒 𝑒 𝑔𝑦 
Identical to the mass conservation principle, the 

energy conservation equation (Kundu, 1999) is,  

 

𝜕 ̅

𝜕 
 

𝜕

𝜕 
(𝑉 )                                                        (  

   
 

 
   where A = wave height from the crest 

height to the trough. Thus, the expression for 

wave energy is given by:𝑒  
 

 
𝜌𝑔  . It follows 

that e is proportional to the square of wave  

amplitude. Equation ( 33) is now of the form : 

𝜕  

𝜕 
 

𝜕

𝜕 
(𝑉  )                                                   (  ) 

 

In the above, the x-axis is usually horizontal but 

rotated perpendicular to the wave vector i.e. 

perpendicular to the wave front elevation. 

Following Brown (2001), Equation 34 has 

representation, 

 

𝑉      𝑐  𝑠                                             (  ) 
 

Where  is the separation factor which denotes 

the distance between two neighboring 

characteristic lines (rays). At the inter-crossing of  

 ( ,  ,  ) =   0 ( 𝑔 )
cosh   ( + 𝑕)

sin  𝑕
cos(     ).                                       

 =    0

 

𝑔
 

2

  
sin2(     )

sin 𝑕2 𝑕 
 𝑐 𝑠𝑕2  ( + 𝑕)𝑑   .                                    (30𝑏)

0

 𝑕
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these lines,   0 and A , from Equation 

35. There are large numbers of such lines that 

are not parallel and thus, are involved in the 

process of inter-crossing and hence form a 

complex pattern (caustics and focuses). The 

scenario may lead to sequence of events in the 

form of large amplitude ocean wave which is 

the important physical manifestation.  

 

 

CONCLUSIONS 

Very interestingly, this study introduces a more 

complex factor. At the inter-crossing and when 

the time    
 

  ( )
    in Equation 8 or 9, the 

energy fluxes (flow)  become  extremely high 

following the behavior of group velocity V(x, 

t) which is the propagation speed of the energy 

flow in Equations 33 and 34. Since there is a 

limiting constant in Equation 34, A may not 

likely grow as expected. 

In totality, the resulting wave height will be 

moderately extreme but energy fluxes so 

generated may be unusually great following the 

earlier formulation, concerning the related 

group velocity kinematic behavior  in this 

study. Thus, this analysis may have extended 

the knowledge emanating from the previous 

findings significantly (Petrova, 2005; Brown, 

2001; Smith, 2002). 
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