
 

45 

Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

Utilization of readily available resources for the design 

and development of an efficient, cost effective, license free 

data repository, capable of very large data volume 
 

Chinedu I. Onwuegbuna* and Hyacinth C. Inyiama 

 

Electronic and Computer Engineering Department, Nnamdi Azikiwe University, Awka, Anambra State 

*Corresponding author. E-mail: eduextra77@yahoo.com. 

 

 

Accepted 6
th

 November 2021 
 

The factors taken into consideration in the choice of a suitable database product can be overwhelming. 

Major relational database products provide about the same level of functionality. Although some 

products offer more features than others, they all provide the basic relational database management 

system (RDBMS) functions such as create, read, update and delete. Many small and medium size 

enterprises require only a large data volume capacity in addition to the basic database functionalities. 

Changing a database system for an establishment especially when the database is already an 

established one can be destabilizing. In the quest to avoid provider lock-in scenario, reduce the 

database management costs, have good control over the database, achieve simplicity of architecture, 

operation and system administration, many enterprise have resorted to open source database products. 

This paper is aimed at utilizing readily available resources to design and develop an efficient, cost 

effective, license free and functional data repository, capable of very large data volume. The developed 

repository was a (homogenous) virtual repository that is an ensemble of independent identical database 

files organized into a grid. The needed control and manipulation requirements for the data repository 

were met by separately developed control algorithms. These algorithms make up the virtualized master 

data management layer. This data management layer feeds and manages the requests to the repository, 

taking into consideration the peculiar structuring and organization of the repository. This developed 

repository can provide medium and small establishments a low cost yet functional alternative to the 

costly larger RDBMS. 

 

Key words: Repository, database, algorithms, NoSQL, schema, RDBMS, big-data, scalability. 

 

 

INTRODUCTION 

A database according to Peter and Coronel 

(2002) is a shared, integrated computer 

structure that houses a collection of end user 

raw facts/data and metadata through which the 

data are integrated. Philip and Joseph (2005) 

defined a database as a structure that can store 

information about multiple types of entities, 

the entities’ attributes and the entities’ 

relationships. Raghu and Johannes (2003) 

described a database as a collection of data, 

typically describing the activities of one or 

more related organizations. Fred and Jeffrey 

(1985) on the other hand defined it as a shared 

collection of interrelated data designed to meet 

the varied information needs of an organization. 

Peter and Coronel (2002) went further to describe 

a database as a well organized electronic filing 

cabinet where a powerful software known as 

Database Management System (DBMS) helps to 

manage the cabinets contents. Arshi (2017) and 

Azhar and Meiryani (2019) all agreed that a 

DBMS is a collection of software programs that 

manages the structure of the database, that it is 

the link between the physical data files and the 

application programs that manage access to the 

stored data and make it possible to share the 

database content among multiple application and 

users. Peter and Coronel (2002) further stated that 

the functions of a database include data dictionary  



 

46 

Onwuegbuna and Inyiama                                                                           Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

management, data storage management, data 

transformation and presentation, security 

management, multi user control, backup and 

recovery management, database access 

language, application programming interfaces 

and database communication interfaces. In the 

quest to get an enhanced data management, 

several database models/systems have been 

developed. A database model is a collection of 

logical constructs used to represent the data 

structure and data relationships found in the 

database.  Fred and Jeffrey (1985), Rai and 

Pramod (2015) and Peter and Coronel (2002), 

all identified the following models: the 

Hierarchical database model, the Network 

database model, the Relational database model 

and the Object oriented database model. 

According to Ward and Dafoulas (2006), the 

relational database systems RDBMS are by far 

the most common type of database system 

around today. This is due to the wide 

acceptance of this model for traditional 

business applications. Again, a well designed 

relational database can provide appropriate 

data storage and retrieval facilities that will 

serve over a long time. However, relational 

database model has difficulty in handling huge-

data, the type usually found in modern 

applications such as web, mobile and gaming. 

According to Michael et al. (2015), 

performance requirements, schema flexibility 

demands, scalability requirements due to 

increase in web oriented applications has 

presented significant challenges for the 

traditional relational databases. Moniruzzaman 

and Syed (2013), Michael et al. (2015), and 

Biswajeet et al. (2014) all pointed out that the 

need for large data volume storage, the need 

for near real time transaction response in 

transaction processing, the need for data 

schema flexibility and for applications to scale 

horizontally with predictable licensing and 

hardware cost has resulted in the introduction 

of more fitting database models grouped under 

the name NoSQL (Not Only SQL) database. 

Among these are the Key-value database 

model, the Document, Graph, In-memory and 

Search database models. These database 

models are non-relational and are optimized for 

the kind of job it is to handle. Michael et al. 

(2015) stated that the old/previous database 

models which include the Hierarchical database 

model, the Network database model, the 

Relational database model and the Object 

Oriented database model were not designed to 

take advantage of the inexpensive storage and the 

extra processing power available these days 

neither are they designed to cope with flexibility 

and scalability challenges posed by modern 

applications. Hira and Roshan (2020) and Moko 

and Asagba (2020) pointed out that these NOSQL 

technologies seek to solve and address these 

challenges and these technologies do not use the 

database table as the data storage structure and 

they have an efficient schema for unstructured 

data. 

There exist today, many relational 

database products that differ on performance, 

ease of database administration, functionality and 

price. Also, there are many RDBMS suppliers 

like Oracle, Microsoft, IBM, Hitachi, Hewlett-

Packard, Fugitsu, and Sybase NCR Tetradata to 

mention but a few. The selection of a suitable 

database product can be a very difficult process 

because so many factors must be taken into 

consideration such as functionality, data model, 

usability, visualization and reporting, security, 

support and development, ease of integration with 

other software systems, scalability, cost, 

suitability, mode of access, efficiency, 

implementation and service costs, adaptability, 

predictability, etc. Other factors in making a 

choice of database product are the database 

products’ conformity with the users’ data 

requirements which invariably depends on the 

problem the database management system is 

intended to solve. Other factors include 

performance, total cost of ownership, simplicity 

of architecture, openness of source code, quality 

of support by vendor, maturity of database and its 

vendor, simplicity of the operation and system 

administration and above all, the ability to know 

what to do to recover when the database system 

goes down and there is no one else to get 

assistance from. 

Today, to stay away from provider lock-in 

scenario and to reduce the database management 

costs, many enterprises have resorted to open 

source database products. According to Rod 

Stephens (2007), the entire major relational 

database products provide about the same level of 

functionality. Some products provide more  



 

47 

Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

features than the others but all the products 

provide the basic RDBMS functions such as to 

create, read, update and delete data, 

collectively known as CRUD. These functions 

form the foundation of a well-organized system 

that promotes consistent treatment of data. It 

can be overwhelmingly destabilizing for an 

establishment to change a database system 

especially when the database is already an 

established one for the establishment. Many a 

times the reason for database platform switch 

are centered on factors like application 

compatibility as desired by the user, the need 

for more capacity especially with respect to 

data volume, licensing issues, total cost of 

ownership, mergers and acquisition, etc. 

Conformity with the users’ data requirements 

greatly depends on the problem the RDBMS is 

intended to solve. Architectural simplicity, 

openness of source code, simplicity of the 

database operation and administration, all these 

attributes will enable the user understand and 

know what to do to recover in case the 

database system crashes.  

Most small and medium size 

enterprises need only a large data volume 

capacity in addition to the basic database 

functionality. Taking all these into 

consideration, this work is aimed at developing 

an efficient, cost effective, license free data 

repository that is capable of very large data 

volume using readily available materials. The 

term (Data Repository) as used in this contest 

refers to a location where data is stored and 

maintained. The repository developed here is a 

(homogenous) virtual repository that is an 

ensemble of independent identical database 

files organized in a grid like fashion but will 

operate as a single repository. The user or 

application that will accesses and use this 

repository will have the feel as that when 

accessing a single database. 

The choice of material for use as the 

building block for the proposed data repository 

that will suit this design was considered on the 

basis of the following factors: Reliability, 

Adaptability, Scalability, Predictability and 

Manageability. 

 

Reliability  
This attribute refers  to  the  consistency  in  

performance of the product according to its 

specifications and how easy it is to secure and 

safeguard data in case of trouble so that critical 

applications can proceed uninterrupted.  

 

Adaptability 
This attribute refers to how easily bendable is this 

product of choice to the exact blend of 

responsibility of the users’ requirements. This 

includes the ability to adapt to rapidly changing 

assignments, without imposing costly hardware 

upgrades or new purchases.  

 

Scalability  

The product of choice must to a reasonable extent 

able to support a growing number of users, data 

volume and transactions without demanding new 

hardware costs and still deliver an acceptable 

response time.  

 

Predictability  

This product of choice should be capable of a 

predictable service level in supporting varying 

workloads. It should easily adjust when 

confronted with expanding demands with respect 

to transactional load, number of users and data 

volume.  

 

Manageability  
The product set up must be fast devoid of 

complicated installation procedure, specialized 

skill or extensive training. The long term total 

ownership cost which includes software license, 

administrative costs, running costs, staffing 

expenditures, etc., must be kept at a minimum. 

 

  

METHODOLOGY 

In the light of the aforementioned, the Microsoft 

Access RDBMS was chosen. The Microsoft 

Access RDBMS will not be used in the 

conventional ways as an Access database engine 

(that is, to use the Access intrinsic/native 

database design objects and functionalities) but 

rather it is to be used in an unconventional way as 

the data repository’s building blocks. The 

Microsoft Access RDBMS is easy to use and also 

easy to propagate. This characteristic nature also 

makes it amenable to this repository design. The 

necessary control and data manipulation 

requirements for the data repository were met by  



 

48 

Onwuegbuna and Inyiama                                                                           Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

separately developed control software 

algorithms and routines that act as a virtualized 

master data management layer. This data 

management layer manages the requests to the 

repository, taking into consideration the 

peculiar structuring and organization of the 

repository. The data repository so organized 

compensated effectively for the data capacity 

limitation of the Access RDBMS. The data 

capacity of the data repository in effect was 

limited by the hardware used to set it up. For 

example, a 120 gigabytes hard disk drive can 

comfortably house and manage a data 

repository with over 100 gigabytes of data. 

Again, the data management layer also 

provided the other features like log-keeping of 

all updates to the repository which expensive 

RDBMS like Oracle, etc., provide. The data 

management algorithm could easily take 

advantage of the various Microsoft Access 

RDBMS functionalities when needed such as 

in transaction management, etc. The data 

recovery in case of failure for the repository 

was achieved by periodic data-backups, 

alongside log-keeping which was scheduled at 

intervals to limit data loss. The classical 

username and password security arrangement 

was used. The Microsoft Visual Basic 

Programming Language was used to develop 

the data management controlling routines. This 

language of choice should support a universal 

data access capability that is flexible enough to 

be adapted to suite the data repository. 

Microsoft visual basic programming language 

choice enabled one to take advantage of the 

Microsoft’s’ strategy for universal data access, 

which is delivered through a common set of 

modern, object oriented interfaces based on 

Microsoft’s component object model (COM) 

for access to data both for relational and non-

relational data sources. 

 

Data repository design 

The data repository developed is a 

(homogenous) virtual repository that is an 

ensemble of independent identical database 

files that is referred to in this work as buckets. 

These buckets were addressed and coordinated 

by routines on the application layer. The 

buckets are named such that their individual 

names facilitated the addressing and 

referencing of each bucket. Each bucket (database 

file) is assumed to be capable of providing the 

basic functionalities of an RDBMS such as data 

storage, retrieval, update, data 

directory/dictionary, transactional integrity, data 

recovery services, concurrency control, security 

mechanisms, data communications interface, and 

data integrity services. Each bucket may or may 

not have a large data storage capacity. 

The principle/approach adopted for 

naming the buckets is as follows. Each bucket’s 

name is made up of three parts namely: the 

PREFIX, GENE and DIFFERENTIATOR. 

The PREFIX is a sequence of characters 

placed at the beginning of this coded bucket’s 

name. The combination of the PREFIX and the 

GENE are the part of bucket’s name that enables 

the algorithms and control routines in the 

virtualized master data management layer to 

identify a homogenous group in the repository. 

The PREFIX is static throughout a homogenous 

group. 

The GENE is the (ending) part of the 

bucket’s name. The GENE is also static 

throughout a homogenous group.  

The DIFFERENTIATOR is the (middle) 

part of the bucket’s name that will enable the 

control routines of the virtualized master data 

management layer to identify and differentiate 

among the members of a homogenous group in 

the data repository. The DIFFERENTIATOR 

varies and its value increases with every new 

additional bucket in a homogenous group. Each 

individual bucket’s name is then the 

concatenation of the PREFIX, 

DIFFERENTIATOR and the GENE, 

respectively. For example, if the PREFIX is 

(friget), the GENE (12345) and the 

DIFFERENTIATOR is 76 then the bucket’s 

name will be friget7612345. 

For proper management and coordination 

of this data repository, there is the need to also 

design a control bucket that will hold the data 

repository storage units’ control information. 

These control information was made available to 

be globally referenced by all the application 

program routines that will need to access the data 

repository to read, write and update records, etc. 

The data repository storage unit control 

information that was held in the control bucket 

includes that for every GENE (that is, a  



 

49 

Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

homogenous group), the following are 

documented: 

 

(a) The Number of Existing Storage Units 

(number of existing buckets) 

(b) The Active Storage Unit (the active bucket) 

 

It is only the control information about the 

buckets needed by the control algorithms that 

are stored in the control DB. This enabled the 

various control algorithms to access them to 

perform their functions properly. 

The following algorithms were used to manage 

and coordinate the repository operations. These  

are (Tables 1 and 2): 

 

(1) The algorithm for read routine 

(2) The algorithm for write routine (ADDNEW) 

and modification processes 

 

 
Table 1. The algorithm for data READ routine. 
  

S/N Algorithm for Read routine Algorithm descriptions 

1 

 Dimension Variable for documenting the caller 
routine / form 

 Dimension Variable for documenting Number of 
Storage Units with the GENE under consideration 

 Dimension Variable for documenting the Current 
Active Storage Unit for Storage Units with the GENE under 
consideration 

 Dimension Tagging Variable for Tracking and 
synchronizing a particular patient’s record 

Dimension needed variables  
 

   

2 
 Synchronize particular patient’s records using the 
patents Tagging Variables 

 

   

3 

 Dimension Integer Variable for loop control 

 Establish connection to Control bucket and target 
the Repository Storage Unit Control Information (table) 

 Do Until End Of File 
- Populate Variable for No of Existing Storage Units 
- Populate Variable for Current Active Storage Units 
                 Loop 

 Close Connection 

Establish connection to Control bucket and target the gene 
of the desired homogenous group in the Data Repository 
Storage Unit Control Information (Table) 
 
 
 
Get control information on number of existing storage units 
Get control information on the active storage unit 
Close Connection 

   

4 
 Prepare Temporary cache/ Microsoft Hierarchical 
FlexGrid 

 

   

5 

 Dimension Loop control Integer Variable 
 

 For VAR1 =1 to (Total Number of existing Storage 
Unit for the GENE under consideration)       control 
information 
 Establish connection to Bucket (Storage Unit VAR1) 
and target the Number of existing Records (control 
information) 
 
o Do Until End Of File 
- Get control information on number of existing 
records 
o Loop 
 Close Connection 

 Next VAR1 

Dimension Integer Variable for loop control 
Set up a FOR TO NEXT LOOP to run from the first 
member of a homogenous group (GENE) housing the 
(desired records verification information) to the last 
member of the group 
Establish connection to Buckets  and target the Number of 
existing desired Records (proper documentation check 
information) 
Get number of existing records (proper documentation 
check information) 
Close Connection 
End FOR TO NEXT LOOP (end of retrieving of  proper 
documentation check information) 

   

 

 

 

 

 



 

50 

Onwuegbuna and Inyiama                                                                           Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 
Table 1. Continue 
 

6  Populate Visual Assistant display segment Populate Visual Assistant display segment(if used) 

   

7 

 For VAR2 =1 to (Total Number of existing Storage 
Units for GENE under consideration) 
 Establish connection to Bucket (Storage Unit VAR2) 
and target the actual Patients Records  
 
o Do Until End Of File 
- Get the needed Patients Records 
- Populate Temporary cache/ Microsoft Hierarchical 
FlexGrid  
o Loop 
 Close Connection 

 Next VAR2 

Set up a FOR TO NEXT LOOP to run from the first 
member of the homogenous group (GENE) housing the 
(desired records) to the last member of the group 
Establish connection to the buckets targeting the desired 
record (using string processing to tag the loop variable to 
the buckets differentiator) 
Read all data from all the existing buckets, the desired 
records via the loop setup 
Close Connection 
 
End FOR TO NEXT LOOP (end of reading/retrieving of  
records) 

 
   

8 
 Check for record documentation Correctness and 
report/act accordingly    

Check for record documentation Correctness and 
report/act accordingly    
Populate Visual Assistant display segment(if used) 

 

 
Table 2. The algorithm for data WRITE routine (ADDNEW) and Modification processes. 
 

 Algorithm for write routine Algorithm descriptions 

1 

 Dimension Variable for documenting the caller 
routine / form 

 Dimension Variable for documenting Number of 
Storage Units with the GENE under consideration 

 Dimension Variable for documenting the Current 
Active Storage Unit for Storage Units with the GENE under 
consideration 

 Dimension Tagging Variable for Tracking and 
synchronizing a particular patient’s record 

 Dimension Log/Failsafe Variables 

 Dimension Grid/Temporary cache Variables 

Dimension needed variables  
 

   

2 
 Synchronize particular patient’s records using the 
patents Tagging Variables 

 

   

3 

“Create This Add New/ Update/ Write Log Routine as a 
subroutine to be referenced later in the write routine 
algorithm” 

 Dimension Integer Variable for Current Active Log 
Storage Unit 

 Populate the Variable for Current Active Log 
Storage Unit 

 Establish connection to Log Storage Unit/ Bucket 
and target the Current Active Log Storage Unit (AddNew 
connection) 
 With RecordSet  
- Populate Variables for Log Storage Unit 
 Update    (New Entries) 
 End With 

Create This AddNew/ Update/ Write Log Routine as a 
subroutine to be referenced later by the data repository 
write routine algorithm 

Dimension Integer Variable for Current Active Log 
Storage Unit 
Populate the Variable for Current Active Log Storage Unit 
Establish connection to Log Storage Unit/ Bucket and 
target the Current Active Log Storage Unit (AddNew 
connection) 
Populate Log Storage Unit (New Log Entries) 
Close Connection 

   

 
 
 
 
 
 
 
 



 

51 

Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 
Table 2. Continue 
 

4 

 Dimension Integer Variable for loop control 

 Establish connection to Control bucket and target 
the 
              Repository Storage Unit Control Information (table) 
 Do Until End Of File 
- Populate Variable for No of Existing Storage Units 
- Populate Variable for Current Active Storage Units 
 
- Populate Variable for No of Existing Fail Safe 
Units 
- Populate Variable for Current Active Fail Safe Unit 
 Loop 

 Close Connection 

Dimension Integer Variable for loop control 
Establish connection to Control bucket and target the 
gene of the desired homogenous group in the Data 
Repository Storage Unit Control Information (Table) 
Get control information on number of existing storage 
units (for desired record) 
Get control information the active storage unit (for desired 
record) 
Get control information on number of Log/Fail Safe 
existing storage units  
Get control information the active Log/Fail Safe storage 
unit  
Close connection 

   

5 
 Prepare Temporary cache/ Microsoft Hierarchical 
Flex Grid 

Prepare Temporary cache/ Microsoft Hierarchical Flex 
Grid( if desired) 

   

6 

 Dimension Loop control Integer Variable 
 

 For VAR1 =1 to (Total Number of existing Storage 
Unit for the GENE under consideration)       control 
information 
 Establish connection to Bucket (Storage Unit 
VAR1) and target the Number of existing Records (control 
information) 
o Do Until End Of File 
- Get control information on number of existing 
records 
o Loop 
 Close Connection 

 Next VAR1 

 Populate Visual Assistant display segment 

Dimension Loop control Integer Variable 
Set up a FOR TO NEXT LOOP to run from the first 
member of a homogenous group (GENE) housing the 
(desired records verification information) to the last 
member of the group 
Establish connection to Buckets  and target the Number of 
existing desired Records (proper documentation check 
information) 
Get number of existing records (proper documentation 
check information) 
Close Connection 
End FOR TO NEXT LOOP (end of retrieving of  proper 
documentation check information) 
Populate Visual Assistant display segment(if used) 
 

   

7 

 For VAR2 =1 to (Total Number of existing Storage 
Units for GENE under consideration) 
 Establish connection to Bucket (Storage Unit 
VAR2) and target the actual Patients Records 
o Do Until End Of File 
o Get the needed Patients Records 
o Populate Temporary cache/ Microsoft Hierarchical 
Flex Grid 
o Loop 
 Close Connection 

 Next VAR2 

Set up a FOR TO NEXT LOOP to run from the first 
member of the homogenous group (GENE) housing the 
(desired records) to the last member of the group 
Establish connection to the buckets targeting the desired 
record (using string processing to tag the loop variable to 
the buckets differentiator) 
Read all data from all the existing buckets, the desired 
records via the loop setup 
Close Connection 
End FOR TO NEXT LOOP (end of reading/retrieving of  
records) 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

52 

Onwuegbuna and Inyiama                                                                           Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 
Table 2. Continue 

 

8 
 Check for record documentation Correctness and 
report/act accordingly    

Check for record documentation Correctness and 
report/act accordingly    

   

9 

 Validate if entries were made correctly 

 Initialize Log variables (for first stage of updates) 

 Request Clearance for Saving/ Update of Records 
(Add New) 

 For VAR3 =1 to (Total Number of existing Storage 
Units for GENE under consideration) 
 Establish connection to Bucket (Storage Unit 
VAR3) and target the actual Patients Records control 
Information (Add New/ Write) 
 
o Do Until End Of File 
o Get the needed Patients Records control 
Information Records 
o Update  
  
o Loop 
 Close Connection 

 Next VAR3 

Initialize log variables for First Stage Updates (i.e. the 
desired records verification information) 
Request Clearance for Saving/ Update of Records (Add 
New) 
Set up a FOR TO NEXT LOOP to run from the first 
member of the homogenous group (GENE) housing the 
(desired records verification information) to the last 
member of the group 
Establish connection to the buckets targeting the desired 
record’s verification Information (using string processing 
to tag the loop variable to the buckets differentiator) 
Update the  desired Record verification Information  
Close connection 
End FOR TO NEXT LOOP(end of first stage updates 

   

10 

 Reinitialize Log variables (for second stage of 
updates) 
 

 For VAR4 =1 to (Total Number of existing Storage 
Units for GENE under consideration) 
 Establish connection to Bucket (Storage Unit 
VAR4) and target the actual Patients Records (Add New/ 
Write) 

 
o Do Until End Of File 
- Get the needed Patients Records  
- Update (Add New) 
  
o Loop 
 Close Connection 

 Next VAR4 

 Update Temporary cache/ Microsoft Hierarchical 
Flex Grid and UI 

 Report Task Completion 

Reinitialize Log variables for second stage of updates (i.e. 
the actual desired records) 

Set up a FOR TO NEXT LOOP to run from the first 
member of a homogenous group housing the (desired 
records verification information) to the last member of the 
group 
Establish connection to the buckets targeting the actual 
desired record this time (using string processing to tag the 
loop variable to the buckets differentiator) 
Update the  desired Records 
Close connection 
End FOR TO NEXT LOOP(end of second stage updates) 
Update Temporary cache/ Microsoft Hierarchical Flex Grid 
and User Interface (if used) 
Report Task Completion 

 

 
RESULTS AND DISCUSSION 

A functional data repository was developed as 

an ensemble of independent identical access 

database files. The building blocks of this 

repository were named such that the data 

management layer can properly identify and 

manipulate them. The developed repository is 

cost effective, license free, and capable of very 

large data volume. The needed control and 

manipulation requirements for the data 

repository were met by separately developed 

control algorithms. These algorithms make up 

the virtualized master data management layer. 

These algorithms/data management layer feeds 

and manages the requests to the 

repository/database pool, taking into 

consideration the peculiar structuring and 

organization of the data repository. This 

developed algorithm was applied in developing a 

Data Repository for a Hospital Information 

System (HIS). The Shell (SPDC) Information and 

Communication Technology (ICT) Research 

Center, Delta State University, Abraka, located in 

Delta State assisted in the HIS software 

deployment, testing and algorithm performance 

evaluation. The HIS was developed as a Server-

Client application with the client side developed 

as a rich/thick client. The ICT center provided a 

suitably networked environment, a local area 

network (LAN) that is capable of data speed of up 

to 100 Mbps for the computers connected using 

category 5 network cables and 54 Mbps for the  



 

53 

Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

computers connected via the wireless access. 

HIS client software was installed in 20 desktop 

computers that were connected using the 

category 5 network cables and 5 laptop 

computers that were connected using the 

wireless access, the repository was installed in 

a server computer and monitored for repository 

algorithm effectiveness. Four doctors, three 

laboratory scientists, five nurses, three 

administrative staff, fifteen persons were 

involved in the testing to simulate a typical 

hospital session. It was observed that the 

developed algorithm was effective giving an 

observed response time in the range of 0.1 to 

2.5 s which is within acceptable response time 

range for such an application. This data 

repository organization effectively eliminated 

the data capacity limitation of two gigabytes of 

the conventional Access RDBMS. The data 

capacity of the data repository in effect was 

limited by the hardware capacity used in 

setting it up. The capacity of the repository can 

be increased by the addition of more access 

database and updating the control information 

in the control DB. This approach to database 

design and use can provide small and medium 

sized establishments an alternative to the costly 

larger RDBMS with a low price tag, especially 

in scenarios where the major requirement of 

the establishment is a large data capacity with 

the basic database functionality.  

 

 

Conclusion 

This work demonstrated how a functional data 

repository that is capable of large data volume 

can be effectively developed using free 

inexpensive RDBMS like access database. It 

also demonstrated a reengineering approach to 

database use. 

 

 

REFERENCES 

BM Moniruzzaman and Syed Akhter 

Hossain, (2013). NoSQL Database: 

New Era of Database For Big Data 

Analytics- Classification, 

Characteristics and Comparison, 

International Journal of Database 

Theory and Application, Vol 6(4) 

Arshi Gouhar, (2017). Database Management 

System, International Journal of 

Engineering  Science and Computing, Vol 

7(5) 

Azhar Susanto and Meiryani, (2019). Database 

Management System, International 

Journal of Scientific Technology 

Research, Vol 8(6) 

Biswajeet Sethi, Samaresh Mishra and Prasant 

ku. Patnaik, (2014). A Study of NoSQL 

Database, International Journal of 

Engineering Research and Technology, 

Vol 3(4) 

Fred R McFadden and Jeffrey A. Hoffer, 

(1985). Database Management, United 

States: The Benjamin/Cummins 

Publishing Company, Pp 66-68 

Hira Lai Bhandari and Chitrakar (2020). 
Comparison of Data Migration 

Techniques from SQL to NoSQL 

Database, Journal of Computer 

Engineering and Information Technology, 

Vol 9(6) 

Michael Madison, Mark Barnhill, Cassie 

Napier, Joy Godin, (2015). NoSQL 

Database  

Technologies, Journal of International 

Technology and Information 

Management. Vol 24(1) 

Moko Anasuodei and Asagba Prince 

Oghenekaro, (2020). Big Data and 

NoSQL Databases Architecture: A 

Review, International Journal of Applied 

Sciences and Mathematical Theory, Vol 

7(1) 

Patricia Ward and George Dafoulas, (2006). 
Database Management Systems, Thomson 

Learning 

Peter Rob and Carlos Coronel, (2002). 
Database Systems Design, 

Implementation, and Management, Fifth 

Edition, USA: Course Technology, 

Thomson Learning, Pp 611-649. 

Philip J. Pratt and Joseph J Adamski (2005). 
Concepts of Database Management, Fifth 

Edition, Thompson Course technology 

P.K.Rai and Pramod Singh, (2015). Studies and 

Analysis of Popular Database Models,  

International Journal of Computer Science 

and Mobile Computing, Vol 4(5) 

 



 

54 

Onwuegbuna and Inyiama                                                                           Nigerian Journal of Science and Environment, Vol.19 (2) (2021) 
 

Raghu Ramakrishaan and Johannes Gehrke 

(2003). Database Management 

Systems, Third Edition, New York 

City: McGraw-Hill, p4-24 

Rod Stephens, (2007). Expert One-On-One 

Visual Basic 2005 Design and 

Development, New Jersey: Wiley 

Publishing, Inc, Pp 133-145 

 


