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In recent years, the many tools from fractional calculus have been extensively used in the mathematical 

modeling of infectious diseases. In this paper, an integer order helminth transmission model proposed 

by Lambura et al. is extended to a fractional model by incorporating the fractional Atangana-Baleanu-

Caputo derivative. Certain basic features such as non-negativity of solutions, invariant region within 

which the model equations are epidemiologically meaningful as well as equilibrium points and basic 

reproduction number are explored. Furthermore, the existence, uniqueness and Ulam-Hyers of the 

associated fractional model are explored via a fixed point technique and generalized Gronwall 

inequality. 
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INTRODUCTION 

The adverse effect diseases caused by parasitic 

worms cannot be underestimated. A major 

variant of existing parasitic worm diseases is 

the soil-transmitted helminthiasis which is 

caused by intestinal parasitic nematode such as 

hookworm species (Necator americanus and 

Ancylostoma duodenale), Ascaries 

lumbriocoides (roundworm) and Trichuris 

trichiura (whipworm) (Jennifer and Jurg, 2008; 

Lambura et al., 2020). People get infected with 

helminthiasis by ingesting 

unwashed/undercooked vegetables, unpeeled 

fruits or water already contaminated by 

parasitic eggs. Soil transmitted helminths are 

one of the most prevalent Neglected Tropical 

Diseases (NTDs) affecting the poorest and 

resource-constrained populations especially in 

Tropical Regions of the world (Pullan et al., 

2014). Available records show that over 1.5 

billion people are infected with helminthes 

throughout the world (Michael et al. 2006). In 

many cases, this parasitic infection leads to 

high morbidity and severe pathological 

complications such as organ failure (Codella et 

al., 2015). More severe complications arise in 

children of school age as they are the most 

infected (Truscott et al., 2016). The intensity of 

helminth disease infection can lead to social, 

economic and educational deficiency among 

children. Hence, effective and adequate control 

measures are necessary. A possible way of 

eliminating helminth infection is by reducing the 

concentration of worms/parasites in a host. 

However, this cannot be achieved without 

reducing the population density of the parasite 

from contaminated environment. Current control 

strategy consists of preventive chemotherapy 

(PC) which is aimed at school age children and 

pre-school children (WHO, 2012). 

Over the years, mathematical models have been 

employed to improve our understanding of 

disease dynamics as well as to provide tools for 

assessing and evaluating effective control 

measures. The mathematical model for the 

helminth infection can be traced to the works of  
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Anderson and May (1978; 1982a; 1982b). 

Lambura et al. (2020) studied a deterministic 

compartmentalized mathematical model for 

soil-transmitted helminth disease with optimal 

controls. Their model incorporates integer 

order ordinary derivatives. They obtained basic 

reproduction number of the model without 

control and showed that both the disease-free 

and endemic equilibrium points are 

asymptotically stable under given threshold 

conditions. Furthermore, using incremental 

cost-effective ratio, they presented the cost 

effectiveness of the control measures and their 

results showed that the combination of health 

education and sanitation is the best strategy to 

combat the helminth infection.  

Mathematical models with integer-order 

derivatives do not adequately account for 

hereditary and memory effects associated with 

most real life processes. Thus, advances in the 

field of Fractional Calculus have helped 

mathematicians to develop models with 

fractional (or arbitrary or non-integer) order 

differential or integral operators. In recent 

times, mathematical models with fractional 

order derivatives have become a central area of 

research studies as they efficiently incorporate 

the evolution-related realities and evidences 

inherent in the systems they model. This has 

led researchers to extend the notions of 

classical calculus to fractional calculus and 

incorporate these notions into models rising 

from mathematical biology. Various notions of 

fractional differential operators have been 

investigated over the years. Among these, the 

Riemann-Liouville and Caouto fractional 

derivatives (Kilbas et al., 2006) are the most 

widely studied in existing literature. The 

Caputo derivative has some disadvantages 

which include the singularity property associated 

with power-type kernel function. Recently, 

Caputo and Fabrizo (Caputo and Fabrizio, 2015) 

proposed the so-called Caputo-Fabrizo fractional 

derivative whose kernel is the exponential 

function. However, this derivative has limitation 

due to the locality of the kernel. To overcome this 

limitation, Atangana and Baleanu (Atangana and 

Baleanu, 2016) proposed the so called Atangana-

Baleanu fractional derivative which incorporates 

the Mittag-Leffler function as a non-singular and 

non-local kernel.  

In this paper, the integer order helminth 

transmission model proposed by Lambura et al. 

(2020) is extended by incorporating the fractional 

order derivative in the Atangana-Baleanu sense. 

To this end, we first recall some very important 

basic model properties associated with the 

normalized version of the integer order model. 

Next, we explore the existence and uniqueness of 

solutions to the fractional order model via a fixed 

point argument. Finally, we demonstrate that 

under certain conditions the stability of the 

fractional model in the sense of Ulam-Hyers is 

ensured. 

 

 

PRELIMINARIES 

In this section, we present some notions and 

preliminary concepts regarding fractional 

differential and integral operators that will be 

used in this work. In the sequel, we denote by 

     the gamma function. 

 

Definition 1 Let           ,     and 

       The Atangana–Baleanu-Caputo 

(ABC) fractional derivative defined in Atangana 

and Baleanu (2016) is given by, 

 

 

  
      

    

   
∫         ( 
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where      is the normalization function which satisfies the property:             and       
denotes the one-parameter Mittag-Leffler function (Podlubny, 1999) defined by, 
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Definition 2 The fractional integral (Atangana and Baleanu, 2016) associated with the ABC 

derivatives is defined by, 

 

  
 

 
        

   

    
     

 

        
∫                

 

 

                                                                      

 

 

Equivalently, it is easy to see that the integral in (3) can be rewritten as, 

 

  
 

 
        

   

    
     

 

    
   

        

 

where   
   denotes the Riemanna-Liouville fractional integral operator (Samko et al., 1993; Kilbas et 

al., 2016). 

 

Definition 3 The Laplace transform corresponding to the ABC fractional derivative (Atangana and 

Baleanu, 2016) for a function      is defined by: 

 

 [   
      

   ]  
    

         
[   [    ]          ]                                                                            

 

Lemma 1 Let       ]   Then the solution of the time-fractional initial value problem, 

  

{
  

      
                                    

                                                 
                                                                                                                     

 

is given by the integral equation (Atangana and Baleanu, 2016), 

 

        
   

    
     

 

        
∫               

 

 

                                                                            

 

 

Theorem 1 (Banach’s contraction principle (Cakan and Ozdemir, 2014). Let   be a Banach space, 

and   a nonempty closed subset of   . If          is a contraction mapping, then there exists a 

unique fixed point of  . 

 

Theorem 2 (Generalized Gronwall’s inequality (Jarad et al., 2018)) Let,     (  
   

    
    )

  

  a 

nonnegative, non-decreasing and locally integrable function on [     and 
     

    
(  

   

    
    )

  

  a 

non-negative and bounded in [       If       is a nonnegative and locally integrable function in  
[     with, 

 

                   
 

 
                                                                                                                                  

 

then 

 

      
        

              
  (

            

              
)                                                                                
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Theorem 3 (Krasnoselskii’s fixed point 

theorem (Cakan and Ozdemir, 2014)). Let   be 

a closed convex subset of a Banach space   

and let       be operators on    satisfying the 

following conditions: 

 

i.    
       

     for every     ; 

ii.    is contraction, that is, there exists     

such that ‖   
     

  ‖   ‖   
   ‖ for every          ; 

iii.    is a relatively compact subset of    
Then there exists     such that       
         
 

 

Helminth transmission model with integer 

order derivative 

In the present section, we recall the integer 

order helminth transmission model formulated 

in Lambura et al. (2020). In their model, the 

total human population denoted by      is 

divided into four mutually exclusive 

epidemiological compartments based on 

dynamics of helminth infection. These 

compartments consist of susceptible      , the 

exposed     , infectious       and recovered      
individuals, such that, 

 

                          
 

The susceptible compartment consists of those 

individuals who are not infected by the helminth 

parasite but have the tendency of being infected 

by the disease under certain conditions. The 

exposed compartment consists of those 

individuals who have been infected by the disease 

but are not capable of transmitting the disease to 

others, possibly due to the level of concentration 

of the infection in them. The infectious 

compartment consists of individuals who have 

been infected by the helminth parasite and are 

capable of infecting others, owing to the presence 

of a higher concentration of the infection in them. 

The recovered compartment is made up of those 

individuals who have recovered from the 

infection. The model also incorporates an 

additional compartment denoted by      which 

consists of the concentration of helminth parasites 

within an environment at any given time. The 

model considered in Lambura et al. (2020) is 

given as, 

 

{
 
 
 
 
 

 
 
 
 
 

  

  
                

  

  
                         

  

  
               

  

  
                          

  

  
                                

                                                                                                                             

 

with initial data, 

 

                                                                                     

 
The parameters in the model (9) are positive constants and are described in Table 1. 

 

 

BASIC ANALYSIS OF THE INTEGER ORDER MODEL 

 

Here, we will report some important dynamical properties already presented in Lambura et al. (2020) 

concerning solutions of the integer order model (9) with respect to the initial conditions (10). To this 

end, we set, 
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Table 1. Description of model parameters. 
 

Parameter Description 

  Recruitment rate in to the susceptible class 

  progression rate from the exposed to infective class 

  rate at which an infected individual contaminates the environment 

  progression rate from the infective to recovered class 

  Immunity waning rate for recovered individuals 

  natural mortality rate 

  Helminth induced death rate 

   natural mortality rate for parasitic worm 

 

 

  
 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

to obtain the following associated normalize model: 

 

{
 
 
 
 
 

 
 
 
 
 

  

  
                              

  

  
                                    

  

  
                            

  

  
                                      

  

  
                                                       

                                                                                                 

 

where term    
  

   
  appearing in the first equation of (11) denotes the force of infection associated 

with the normalized model. Moreover, it is easy to see that, 

 

                                                                                              
 

Then, in place of (9), it is convenient to study the dynamics of the normalized model (11) (Lambura et 

al., 2020) with respect to the initial conditions, 

 

                                                                      
 

By adding all equations in (11), the dynamics of the normalized model satisfies the following equality: 

 
  

  
                                                                                        

 

To ensure epidemiologically well-posedness of the normalized transmission model (11), one must 

establish that all the system state variables are non-negative for all time. That is, solutions of the model 

(11) with non-negative initial data will remain non-negative for all time       
 

Lemma 2 Let    {                         }           {         
 }  Then, the region              is positively invariant and attracting with respect to the 

model (12) and non-negative solutions exists for all time       
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Proof  see Lambura et al. (2020). 

 

Next, the equilibrium points of the normalized model (11) are steady state solutions obtained by setting 

the, 

 l 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
    

 

Clearly, the normalized model (11) admits two equilibrium points, which are highlighted as follows: 

 

Helminth free equilibrium points (HFE): The Helminth free equilibrium point refers to the 

equilibrium point of the model (12) in the absence of helminth disease within the population. In this 

case     and hence            . Thus, by setting, 

 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
   

 

we have the HFE as, 

 

     {         }                                                                             

 

Helminth endemic free equilibrium points (HEE): The Helminth endemic equilibrium point refers 

to the equilibrium point of the model (9) when helminth disease is endemic within the population. In 

this case     and hence            . Thus, by setting, 

 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
   

 

together with the above assumptions, we have the HEE as, 

 

     {                             }                                                   
 

Where, 
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In (17), we used the following notations for the sake of computational convenience        
                                                            
      Furthermore, by the next generation approach due to Diekmann et al (2000), the basic 

reproduction number of the model is given by,  
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Here, the fraction  
 

         
  denotes the average number of susceptible individuals being infected 

during the infectious period;  
 

     
  is the proportion of individuals that survives the latent period and 

 

  
 represents the fraction of parasites diminished from the environment. 

 

 

THE FRACTIONAL ORDER HELMINTH TRANSMISSION MODEL 

The importance of integer order epidemic models in mathematical epidemiology cannot be ignored. 

However, these integer order epidemic models have certain number of limitations. Some of the 

limitations include the non-existence of memory or nonlocal effects and the inability to capture 

crossover behavior of physical or biological processes. To overcome these limitations, the fractional 

differential operators are incorporated in the modelling of biological systems because these operators 

take into account memory effects and the crossover behavior of the model. Therefore, to explore the 

helminth transmission model (9) more realistically, in the framework of fractional differential operators 

in the ABC sense, we replace the classical derivative by the fractional order in ABC derivative. Thus, 

the fractional helminth transmission model with the nonlocal kernel is given as: 

 

{
 
 

 
 

  
                    

          

  
       

                               

  
      

                       

  
       

                               

  
        

                                  

                                                                                                       

 

with association initial data: 

 

                                                                                
 

Clearly, the fractional order model (10) generalizes the classical integer order model. 

 

 

QUALITATIVE ANALYASIS OF THYE FRACTIONAL MODEL 

Existence and uniqueness of solutions 
We establish the existence and uniqueness of solutions to the fractional model (18)-(19) using the 

approach of fixed point theory. The model stability is discussed in the sense of Ulam-Hyers. To this 

end, we set, 
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{
  
 

  
 
  (                          )                   

  (                          )                           

  (                          )                

  (                          )                           

  (                          )                               

                                                                        

represents the right hand side of each equation in the system (18). Then the fractional model (18)-(19) 

can be rewritten in the following compact form: 

 

{
  

       (      )        [   ]        
   

                                                                               
                                                                                  

 

Based on Lemma 1, the fractional IVP (21) admits the following equivalent integral representation: 

 

        
   

    
 (      )  

 

        
∫  (      )            

 

 

                                                 

 

Using (24),  the operators         are defined as follows, 

 

{
 
 

 
  [    ]     

   

    
 (      )                                 

 [    ]  
 

        
∫  (      )            

 

 

                                                                                    

 

Further, let               and     [   ]     a Banach space of continuous functions 

  [   ]     endowed with the norm ‖ ‖       [   ]{           }  where    
  [   ]

       

   
  [   ]

                                     and                            [   ] . In order to 

establish the existence and uniqueness of solutions to the fractional problem (18)-(19), we will assume 

that the following hypotheses are satisfied by the nonlinear function    [   ]        appearing 

in the corresponding fractional IVP (21):  

 

(H1) (Lipschitz condition) With respect to the continuity of  , there exists a constant       such 

that for each           
 

| (       )   (       )|                                                                                                            

 

(H2) (Linear growth bound) There exists constants     ,      such that, 

 

                                                                                                                                                          
 

Theorem 4 Under the hypothesis (H1)-(H2), the fractional IVP integral equation (21) has at least 

one solution if 
     

    
      Consequently, the considered fractional model (18)-(19) possesses at least 

one solution. 

 

Proof: Next, for   [   ]  we introduce the fixed point operator        defined by  

 [    ]     
   

    
 (      )  

 

        
∫  (      )            
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Clearly,  [    ]   [    ]   [    ]  Let    {     ‖ ‖          }  be closed convex subset 

of    . Then we establish the proof of the theorem in the following three steps: 

 

STEP 1: We need to show that          for every            [   ]. By using hypothesis (H2), 

we have, 

 

‖ [    ]‖     
  [   ]

{     
   

    
| (      )|  

 

        
∫         | (      )|   

 

 

}                   

                   {     
   

    
(     

  [   ]
      )  
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where           (
   

    
 

  

        
)      and      (

   

    
 

  

        
)       Thus, with    

  

    
, it holds that         . 

 

STEP 2: In this step, we show that the operator    is a contraction mapping.  To this end, let     ̃  
  . Then by the hypothesis (H1) we have, 

  

‖ [    ]   [ ̃   ]‖     
  [   ]

   

    
| (      )   (   ̃   )|  

                             
   

    
     

  [   ]
|      ̃   |     

                   
   

    
  ‖      ̃   ‖     

 

Thus, under the condition  
   

    
    , the operator   is a contraction mapping. 

 

STEP 3: Next, we show that   is relatively compact for any      . To achieve this, we show that   

is continuous, uniformly bounded, and equi-continuous. Clearly, the operator   is continuous since 

 (      )   then is continuous. Now, for      we have, 
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This implies that   is uniformly bounded on   . Finally, we show that   equicontinuous. Let      

and       [   ] such that        Then, 

 

‖ [     ]   [     ]‖  
 

        
∫          | (      )|   

  

  

                                           

                                                         
 

        
∫                    | (      )|   

  

 

        

       
        

     
    

  

        
                         

 

As       the right-hand side of the last inequality above tends to zero. Hence,   is uniformly 

continuous and bounded. Consequently, by Azela-Ascoli theorem,   is relatively compact and so it is 

as well completely continuous. Thus, by Theorem 1, we deduce that the fractional IVP problem (21) 

has at least one solution. Consequently, the fractional model (18)-(19) admits at least one solution. 

 

Theorem 5 Suppose that (H1) holds, then the fractional IVP (21) admits a unique solution if, 

 

 (
   

    
 

  

        
)                                                                           

 

Consequently, the considered fractional model (18)-(19) admits a unique solution. 

Proof. Let          and   [   ]  Then, from the operator equation in (26), we have, 
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Clearly, if   (
   

    
 

  

        
)     , then the operator   admits a unique fixed point, by Banach 

contraction principle. Therefore, the fractional IVP (21) admits a unique solution. Consequently, the 

fractional model (18)-(19) admits a unique solution. 
 

 

Stability analysis (Ulam-Hyers stability) 

 

Theorem 6 Suppose that (H1) is satisfied, then the zero solution of the fractional IVP (21) is stable 

and bounded if, 

  

(
   

    
 

  

        
)      

Proof:  In view of Lemma 1, we recall that the fractional IVP (21) admits a unique solution given by 

the integral equation (22). Set     
  [   ]

‖      ‖   . Then by (H1) we have, 
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This implies, 
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This implies ‖    ‖       . Hence, the fractional IVP (21) is stable and bounded. 

 

Definition 4 The proposed fractional IVP (21) is said to be Ulam-Hyers stable if there exists a real 

number                             
     such that the following statement is satisfied:  For 

some                       
    and each solution   ̃    satisfying the inequality, 
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there exists a unique solution     of (11) such that, 
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Furthermore, it is also said to be generalized Ulam-Hyers stable if there exists             with 

         any solution  ̃    satisfying (28) and any unique solution      of (21), the following 

inequality holds ‖      ̃   ‖           
 

Remark 1: Consider a small perturbation     [   ]    with        satisfying the following 

properties: 
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        , for   [   ]  where  
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Lemma 3 The solution  ̃     of the perturbed problem, 
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{
  

  ̃     (   ̃   )        
                          

 ̃     ̃                                                           
                                                    

satisfies the inequality, 
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Proof: With the help of Lemma 1, the solution of the perturbed problem (29) is given by, 
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Moreover, in view of the Remark 1 we have, 
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Theorem 7 Under assumptions of Theorem 6, the solution of the considered model (9)-(10) is 

Ulam-Hyers stable in  .  

 

Proof: Let  ̃    be the solution of (28) and     is a solution of (21) with initial condition      
 ̃     ̃    Then, by an application of Lemma 1 on (21) together with the fact that       ̃   we 

have the integral equation, 
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 (      )  
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Moreover, in view of (28), assumption (H2) and Lemma 3, we obtain, 
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Applying Theorem 2 with      (
   

    
 

  

        
)    and          it is easy to see that the last 

inequality above implies, 
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Where, 
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  (

     
 

            
)  

 

This implies that the fractional IVP (21) is Ulam-Hyers stable. As a consequence, the fractional model 

(18)-(19) is Ulam-Hyers stable.  
 

Corollary 1 Under the hypotheses of Theorem 7, if there exists          with         , 

then the fractional IVP (21) is generalized Ulam–Hyers stabile. Consequently, the fractional model 

(18)-(19) is generalized Ulam–Hyers stabile. 

 

Proof. Choosing       =     and         , then from Theorem 7 we have,  

 

| ̃        |         
 

 

CONCLUSION 

In this paper, a time fractional model 

describing the transmission dynamics of 

helminth disease is considered. Firstly, a 

classical integer order model in the form of a 

system of nonlinear ordinary differential 

equations is formulated using a 

compartmentalized approach. Some basic 

properties such as non-negativity of solutions, 

invariant region as well as equilibrium points 

are investigated for the integer order model. 

Furthermore, we extend the integer order 

model to its generalized fractional order 

counterpart by incorporating the fractional 

derivative in the Atangana-Baleanu-Caputo 

sense. By employing a fixed point approach, 

the fractional model is shown to admit a unique 

solution. Additionally, using the generalized 

Gronwall inequality, the Ulam–Hyers and 

generalized Ulam–Hyers stability are 

established for the fractional model. 
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