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This paper considers the numerical simulation of stochastic Bonhoeffer Van Der Pol oscillation 

problem (SBVD), using the variational iteration method (VIM) and homotopy perturbation method 

(HPM) to implement the VIM and HPM on the stochastic Bonhoeffer Van der Pol oscillator. The study 

shows that SBVD oscillator oscillates within the interval . This implies that there is self-sustaining 

oscillation in which the energy is fed into small oscillations and removed from large oscillations. 

However, the HPM generates oscillations that possess much more energy than the VIM. When   

, the equation reduces to the simple harmonic oscillator. All computational framework of this research 

were performed using MAPLE 18 software. 
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INTRODUCTION 

Many wide range physical applications in 

science and technology are mostly nonlinear 

systems and are of great significance in the 

world of mathematical modeling. The Van-der 

Pol equation was first introduced by a Dutch 

electrical engineer, Balthazar Van der Pol 

(1889 - 1959), who initiated the urge for 

experimental dynamics in the laboratory. He 

gave the experimental equation to describe the 

characteristics of triode oscillations in 

electrical circuits in 1927 (Marios, 2006). 

However, the underlying mathematical model 

for the dynamical system is a well-known 

second order ordinary differential equation 

with third order nonlinearity 

 

Ü + β(U
2
 -1 )  + U = 0                                 (1)    

 
where β is the controllable oscillatory 

coefficient, and  Ü,   and U are differential 

operators of various orders. Equation 1 is 

known as the (unforced) Van der Pol equation 

(Van der Pol, 1920). Equation 1 is a mere 

simple mathematical model for excess 

characteristics observed in the laboratory 

experiment. If β then the Van der Pol Equation 

1 produces a relaxation oscillations (Van der Pol, 

1920). This discovery has become the bedrock of 

modern theory of geometric singular perturbation, 

which plays a major role in the analysis of 

autonomous and non-autonomous Van der Pol 

oscillators. Van der Pol continued in this line of 

research and proposes yet another version of 

equation (1.1) with a periodic forcing term given 

as 

 

Ü + β(U
2
 -1 ) + U = b Cos ( )          (2) 

 

where Ü, U, and β are as defined in Equation 1, 

 represent the angular velocity of the oscillation 

in time .
 

However, it was noted that systems modeled by 

Van der Pol oscillators are chaotic and possess a 

periodic behavior into high level of sensitivity, 

which rely solely on initial conditions (Cartlight 

and Littlewood, 1945). Basically, Van der Pol 

oscillators are critical in the enhancement, 

development and implementation of nonlinear 

dynamic systems.  
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The Bonhoeffer-Van der Pol oscillator is a 

piecewise version of the Balthazar-Van der Pol 

oscillator, which confirms the underlying 

principles of Van der Pol oscillator to a more 

explicit Hodgkin-Huxley model (Partitz and 

Lauterbom, 1980). Ebeling (1976) reported that 

the Bonhoeffer Van der Pol oscillator (BVDP) 

has been classified as a prototype model for 

excitable systems. According to Weinhein 

(1988), the BVDP oscillators are governed by 

large and small alternating amplitude excursion 

in the real time series. Thus, a BVDP oscillator 

is an explicit non-autonomous system given as 

(Benitez and Bolos, 2007): 

 

                        (3) 

 

where the real constants b, c and d are of great 

physical and biological importance. The term 

 is a periodic forcement term. 

An oscillator is mathematically described by 

a set of (nonlinear) differential equations and 

considered to be a (nonlinear) dynamical 

system (Guckenheiner and Holmes, 1983). The 

influence of noise on nonlinear dynamical 

systems has been an object of intense 

investigations (Moss and McClintock, 1987), 

since real systems like biological systems 

always have noise.  

The phenomenon of transitions induced by 

external noise has led to a revival of the 

interest for the role of fluctuations in physical 

systems (Horsthemke and Lefever, 1984). For 

instance, in a multi-stable system which 

possesses several competing states of local 

stability, noise can be responsible for transition 

between these states. Recently “noisy” systems 

have also received considerable attention 

within the context of stochastic resonance. 

Grasman and Roerdink (1989) analyzed the 

Van der Pol relaxation oscillator with additive 

noise and reduced the problem of examining 

the period of the noisy oscillator to the analysis 

of the time necessary for a one-dimensional 

stochastic process to reach a boundary for the 

first time. 

The behavior of the system in Equation 3 is 

chaotic and periodic with a high level of 

sensitivity depending on initial conditions. As 

such, numerical techniques have become more 

reliable source of solution to the BVDP 

oscillation (1.3). Popular numerical methods for 

the system in Equation 3 include the invariant 

method (Benitez and Bolos, 2009) and the 

Melnikov scheme (Rajaseker and Parthasarathy, 

1992). However, these methods only seek the 

intersections between stable and unstable 

manifolds, and not the explicit behavior of the 

system in terms of it randomness. Thus, the 

system is stochastic, and can therefore be 

modeled as a stochastic differential equation. 

A transformation of the system in Equation 3 

into stochastic differential equation yields: 

 

           (4) 

 

where  is called the noise intensity, b, c and d are 

real constants,  is the state of the system and  

is called the white noise. The subscript, , denotes 

time dependent. Thus, Equation 4 is called the 

stochastic Bonhoeffer-Van Der Pol Oscillator. A 

special kind of Equation 4 is the model firing of 

single neuron given as: 

 

                (5) 

 

In this paper, the stochastic Bonhoeffer Van-der 

Pol oscillator will be solved numerically using the 

variational iteration method (VIM) and homotopy 

perturbation method (HPM). The VIM as an 

iterative scheme was first proposed by He (1998) 

for the numerical treatment of nonlinear analytic 

systems. Since then, the method has become an 

efficient solver of many Mathematical problems 

in various fields of science and technology such 

as biophysics, laser physics, population 

dynamics, engineering, marketing, and plasma 

physics. The method can also be used for 

mathematical models involving integro-

differential equations (ordinary or fractional), 

differential equations (ordinary, partial, delay, 

algebraic and stochastic) initial and boundary 

value problems etc. (Mamadu and Njoseh, 2016; 

Mamadu and Njoseh, 2017; Njoseh and Mamadu, 

2016). The choice of VIM for solving in Equation 

4 lies in its simplicity in estimating the initial 

approximation. It is also programmable. 
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In like manner, the HPM was proposed by He 

(1997) for solving a wide range of physical 

problems. It is a merger of the standard 

homotopy and perturbation method. It has 

major applications in limit cycle analysis, 

bifurcation of linear and nonlinear problems, 

and nonlinear oscillations (He, 2008). The 

choice of the HPM for Equation 4 lies in the 

easy observation of convergence of the scheme 

through the comparison of the embedded 

parameter  of the various orders (Othman et 

al., 2010). 

 

 

VARIATIONAL ITERATION METHOD 

(VIM) 

VIM developed by He (1998), is a very reliable 

and effective technique for obtaining the 

analytical and numerical solution of linear and 

non-linear, homogenous and non-homogenous 

equations. The technique presents its results in 

rapidly convergent series which converge to a 

close form of the exact solution. A major 

advantage of the variational iteration method is 

that it gives solution without the use of the 

Adomian polynomials which are mostly used 

for non-linear cases. The solution obtained can 

also be assumed as its exact solution if the 

analytical solution is not given. Hence the error 

is given by: 

 

              (6) 

 

Likewise, when the exact is known, its form is 

given by: 

 

 
 

where is the exact solution and  is the 

approximate solution.  

 

To discuss the basic idea of variational 

iteration method (VIM), consider the 

differential equation:  

       

 ,                          (7) 

 

where  and  are linear and nonlinear operators 

respectively, and , the forcing term or non-

homogenous term (He, 1999; 2007).  The 

variational iteration method admits the use of 

correction functional in the form: 

 

          (8) 

 

where  is the general lagrange multiplier and can 

be obtained via variational theory (He, 1999). 

Hence for complete evaluation of the variational 

iteration method (VIM) we need to determine the 

Lagrange multiplier and then substitute back into 

the correction functional. Also,  is called a 

restricted variable. 

The general Lagrange multiplier can also be 

evaluated using the formula (Mamadu and 

Njoseh, 2016): 

 

, 

 

where  is the highest occurring derivative. 

The correction application of the variational 

iteration method in Equation 8 gives several 

approximations which converge to the exact 

solution. We now state the following theorem on 

convergence of VIM. 

 

Theorem 2.1   

For Banach spaces  oppose the non-linear 

mapping satisfy 

 

 
 

For some constant:  Then  has a unique 

fixed point. Furthermore, the sequence 

 

 
 

with arbitrary  choice of  converges to the 

fixed point ,  

 

 
 

Hence, for non-linear mapping  

 

 
 

Proof. For each  exist, 

where  is a non-linear mapping satisfying  

Now for each , where , we have 
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                 (9) 

 

                                                          (10) 

 

                                         (11) 

 

Simplifying, we have that, 

 .  

 

Thus, the limit  exists, and so 

the sequence  is bounded. 

 

Next, it shows that for some fixed constant the 

sequence  converges to a definite fixed 

point  

 

. 

 

In view of in Equation 10 and 11, we have  

 

 (as n tends to 

infinity).                         (12) 

 

The study shows that  converges to some 

point in  In fact, it follows from Equation 12 

that there exists a subsequence    such 

that  as  and  

(some point ).  

 

Consequently,  

 

  
 

  
 

  
 

This implies that  since  and the 

 exists, we have that  

 

 

HOMOTOPY PERTURBATION 

METHOD 

To describe the HPM, the study considers the 

generalized differential equation of the form 

(Njoseh and Mamadu, 2017): 

 

 
We now define the operator  

 

 
 

where ,  

 

Next apply the homotopy of the form

 by  

                                    (13) 

where  are the functional operators. We 

construct a convex homotopy of the form 

 

              (14) 

 

This homotopy satisfies   for  and . The 

embedding parameter  monotonically increases 

from 0 to 1 as the trivial solution  continuity 

defined (He, 1999), to the original problem . 

The HPM admits the use of the expansion 
 

                                                  (15) 
 

and consequently  

 

     (16) 
 

The series converge to the exact solution if such a 

solution exists. Substituting Equation 15 into 14, 

and equating the terms with like powers of the 

embedding parameter  we obtain the recurrent 

relations  
 

 
 

 
 

 
 

In the case of VIM the correction functional for 

the stochastic Bonhoeffer Van-der Pol oscillator, 

was corrected first, and then obtain the general 

Lagrange multiplier optimally via the variational 

theory. The solution follows by iterating on the 

derived recurrence relation for  For HPM, we 

only need to construct a convex homotopy for the 

stochastic Bonhoeffer Van-der Pol oscillator and 

solved the solution using the given initial 

conditions. 

 

Theorem 3.1 

Let L( ) denote 
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in equation 3 such that 

 

        

    

   

where b, c and d are real constants,  is called 

the state of the system and  is called the white 

noise.   

Then, VIM converges if the following 

conditions are satisfied: 

 

1.  

 

2. For  there exist  such that 

 
 

Then,  

 

 
 

Proof:  

Let  such that 

  

 

Applying the Schwartz inequality, we get  

 

  

By the conventional use of the mean value 

theorem, we obtained  

 

  
 

 
 

Hence,  
 

,  
 

holds with . 

 

Similarly, for  such that 

 
 

Then,  

 

  

This completes the proof. 
 

 

NUMERICAL EXAMPLES 

The VIM for stochastic Bonhoeffer Van der 

Pol oscillator 

To start off the VIM process, we rewrite the 

stochastic Bonhoeffer Van der Pol oscillator in 

Equation 4 as 
 

                                                              (17) 
 

                          (18) 
 

Equations 17 and 18 are known as the stochastic 

integral Bonhoeffer Van der Pol oscillator. 

Based on the description of the VIM, a correction 

functional for Equations 17 and 18 are given as 
 

                                                                         (19) 
 

                                          (20) 
 

The general Lagrange multiplier is given as: 
 

 (since ). 
 

Thus, using VIM, Equations 17 and 18 becomes 
 

                                                                         (21) 
 

                                          (22) 
 

The HPM for stochastic Bonhoeffer Van der 

Pol oscillator 

The study presents the homotopy perturbation 

method for handling the stochastic Bonhoeffer  
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Van der pol oscillator. First, Equation 4 was 

rewritten 

 

  

   
  

We now define the operator as:  

 

 

 
 

where , . 

 

Next, the homotopy of the form 

 was applied by: 

   

                        (23) 

 

                 (24) 

 

where  are the functional operators. We 

construct a convex homotopy of the form 

 

 (25) 

 

and          (26) 

 

This homotopy satisfies  (4.10) for  

and . The embedding parameter  

monotonically increases from 0 to 1 as the 

trivial solution  continuity defined 

(He, 1999), to the original problem . The 

HPM admits the use of the expansion 

 

           (27) 

 

and consequently  

 

                  
                                               (28) 

 

The series converge to the exact solution if 

such a solution exists. Substituting Equations 

27 and 28 into Equations 25 and 26, and 

equating the terms with like powers of the 

embedding parameter  we obtain the recurrent 

relation  
 

 

  

  

 

  

  
 

Remark  

The white noise is discretized using a MAPLE 18 

aided random walk analysis encoded within the 

program. 

Now, for  and  executing the VIM 

scheme Equations 21 and 22 with MAPLE 18 

software with the parameters  

, the behaviour of the 

SBVD oscillator is shown in Figure 1. Similarly, 

with HPM with same parameters we obtained the 

behaviour of the SBVD oscillations in Figure 2.  
 

 

RESULTS AND DISCUSSION  

Implementing the VIM and HPM on the 

stochastic Bonhoeffer Van der pol oscillator, it 

shows that SBVD oscillator oscillates within the 

interval . This implies that there 

is self-sustaining oscillations in which the energy 

is fed into small oscillations and removed from 

large oscillations. However, the HPM generates 

oscillations that possess much more energy in 

self-sustenance, in which the energy is fed into 

small oscillations and removed from large 

oscillations. When ,  the equation reduces to 

the simple harmonic oscillator. 
 

 

Conclusion 

It is important to note that for every mathematical 

formulations or constructions, many analytic 

methods are difficult to resolve in real sense. 

Thus, our results have shown that the iterative 

schemes VIM and HPM are efficient solvers of 

the explicit non-autonomous system of the 

Bonhoeffer Van-der Pol oscillator. On the basis 

of our analysis and computation, we conclude 

that the VIM and HPM are good iterative 

schemes for the solution of the explicit non-

autonomous system of the Bonhoeffer Van-der 

Pol oscillator. 
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Figure 1. VIM generated oscillations for SBVD oscillator. 

 

 

 
 

Figure 2. HPM generated oscillations for SBVD oscillator. 
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