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This study showed the application of explicit Euler and Milstein for solving a Geometric Brownian 

Motion (GBM). Using the Euler explicit scheme, it was observed that when the price of an asset at the 

initial time is positive, then the volatility of the asset is always positive; while if the price of the asset at 

the initial time is negative, the volatility of the asset is also negative. The GBM, discretizing in time T 

= 2, using the explicit Euler Scheme with constant volatility and drift shows the effect of random walk 

in stock prices. This shows that the degree of random walk is not entirely centered, and as such with 

timely variation of the drift and parameters can savage the stock price situation also the GBM through 

explicit Milstein scheme produced a chaotic process whose random walk is clustered with constant 

drift and volatility parameters. This suggests that the stock price situation will unlikely be savaged if 

the stock price market is sabotaged. 
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INTRODUCTION 

In deterministic differential equations, the 

consequence of random noise in the 

mathematical modelling of real-life situations 

is often ignored. It was noted that such 

equations only considered the mathematical 

framework of the system average 

(Cyganowski, 2002). However, when 

nonlinearities are involved in the model, it is 

required to present the complete performance 

of the model to access its behaviour. This is 

where the conception of stochastic differential 

equations is introduced. Stochastic differential 

equation describes the consequence of random 

noise within the physical systems. Stochastic 

differential equations have found many 

applications in science and technology such as 

Physics, Chemistry, structural mechanics and 

seismology, optical bistability and fatigue 

cracking, financial mathematics, mathematical 

biology, radio-astronomy, turbulent diffusion, 

etc. (Kloeden & Platen, 1992). A stochastic 

differential equation (SDE) is a differential 

equation in which one or more of the 

expressions are a stochastic process, ensuing in 

a result which is also a stochastic process. 

Typically, SDEs have a variable which represent 

random white noise considered as the derivative 

of Brownian motion or the Wiener process. 

However, other types of random behaviour are 

possible, such as jump process. Early work on 

SDEs was done to describe Brownian motion in 

Einstein's famous paper and at the same time by 

Smoluchowski (Li and Liu, 2017); though, one of 

the previous works associated to Brownian 

motion is credited to Bachelier (1901) in his 

thesis 'Theory of Speculation’. This work was 

followed by Langevin, and later Ito and 

Stratonovich placed SDEs on more Solid 

mathematical footing. Itô (1944) laid the 

foundation of a stochastic calculus known today 

as the Itô calculus. This represents the stochastic 

generalization of the classical differential 

calculus, which models various phenomena in 

continuous point in time such as the dynamics of 

stock prices, physical systems or the motions of a 

microscopic particle subject to random 

fluctuations. The corresponding stochastic 

differential equations (SDEs) generalize the 

ordinary deterministic differential equations 

(ODEs). In general, 1-dimensional Ito stochastic 

differential equation has the form 
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                                                 (1) 

 

where  (  )  is called the drift coefficient 

(which varies slowly), and  (  )  is the 

diffusion coefficient (a rapidly varying 

component).    is a Wiener process   
*   𝑡   + that defines the randomness of the 

physical system, and it is often called the white 

noise. The subscript 𝑡  in the white noise 

represents time-dependence. 

The Wiener process is the simplest intrinsic 

noise term that adequately model Brownian 

motion. The integral form of Equation 1 is 

 

                                      (2) 

 

The first integral in Equation 2 is a Volterra 

integral and the second integral is an Ito 

stochastic integral or an integral stochastic 

equation with respect to the Wiener 

process   *   𝑡   +. More so, the second 

integral is not governed by the classical rule of 

calculus. This caused a period of stagnation in 

resolving this problem. However, it was not 

until the 1940s when Ito proposed his 

definition of the Ito integral that provided 

insight in resolving the second integral 

(Cootner, 2001).  

Human life and human environment are 

inherently nonlinear and stochastic. Many 

model parameters that define any mathematical 

construction can only be estimated and also on 

the undeniable fact that many mathematical 

models are an approximation to reality. Thus, 

the numerical methods are required because it 

is difficult to solve SDEs analytically. 

Unfortunately, there was no explicit numerical 

method for stochastic differential equations, 

until the advent of digital super computers. 

Numerical methods such as the Euler’s 

scheme, Milstein’s scheme and Taylor’s 

scheme, etc., were all implementable on digital 

computers. 

The Taylor expansion is the bedrock for 

developing numerical approximations in 

deterministic calculus, so it is in stochastic 

numeric. Since the focus is on stochastic 

calculus; thus, a first order stochastic Taylor 

expansion has the form  

 

                                                                           (3) 

 

where 

 

                                                                           (4) 

 

and   is the remainder term. By applying the 

operator (Equation 4) repeatedly, higher order 

stochastic Taylor expansions were obtained. 

Over the years, there are literatures that treated 

numerical approximation techniques for 

stochastic differential equations (SDEs). 

However, there is still a wide gap between the 

systematic theory of SDEs and its applications. In 

this study, this gap will be narrowed by exploring 

the numerical methods and their applications to 

Geometric Brownian Motion (GBM). All 

computational frameworks in this study are 

carried out with Maple 18 software. 

 

Geometric Brownian motion (GBM) 

The Geometric Brownian Motion (GBM) (also 

known as exponential Brownian motion) is most 

relevant in stock prices as it incorporates the 

fundamental of random walks in stock prices.  A 

lot of researchers (Sengupta, 2004; Ladde and 

Wu, 2009; Wylomanska and Gajda 2012; Brewer 

et al., 2012; Abidin and Jaffar, 2014) over the 

years have used the GBM as a model in analyzing 

the degree of randomness in stock prices.  

 The GBM is a stochastic process , which is 

governed by the stochastic differential equation 

(SDE) 

 

                      5) 

 

where 

 is the drift parameter 

 is the volatility parameter 

 

and 

 

 is the standard Wiener process. 

 𝑑 𝑡 =  ( 𝑡)𝑑𝑡 +  ( 𝑡)𝑑 𝑡 , 𝑡  0,   

  𝑡 =  0 +   ( 𝑠)𝑑𝑠
𝑡

0
+   ( 𝑠)𝑑 𝑠

𝑡

0
, 𝑡  0  .  

 𝑔( 𝑡) = 𝑔( 0)+ 𝐿0𝑔( 0)  𝑑𝑠
𝑡

𝑡0
+ 𝐿1𝑔( 0)  𝑑 𝑠 +  
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𝑡0
   

  𝐿0 =
𝜕

𝜕𝑡
+  (𝑥)

𝜕

𝜕𝑥
+

1
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𝜕𝑥 2 , 𝐿1 =   (𝑥)
𝜕

𝜕𝑥
,  
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NUMERICAL METHODS 

The explicit euler approximation  

The Euler approximation (EP) is one of the 

elementary stochastic time discretization 

approximations of an Ito process (Reddy and 

Clinton, 2016).  The scalar stochastic 

differential equation (SDE) of an Ito process is 

given as   *   𝑡   + 
 

𝑑    (𝑡   )𝑑𝑡   (𝑡   )𝑑   𝑡      
                                                            (6) 

 

with the initial condition 

 

         

 

Discretizing  (6) in time in the interval ,𝑡   -, 
we have  

 

 
 

which is a continuous Euler’s approximation 

satisfying the scheme 

 

                                                            (7) 

 
for    ( )(   )  with the initial 

conditions 

 

                                (8) 

 
for all values of    at    (discretization time). 

Now, let us write 

 

                                    (9) 

 
to denote the maximum  th time increment and 

call 

 

            (10) 

 
The maximum step in time increment 

Let the equidistant time discretization be 

                                              (11) 

 

Thus,   
(    )

 
 for N is large enough to ensure 

  (   )  
When  (𝑡   )    in (6), the iterative scheme (7) 

reduces to an ordinary differential equation 

 

                                         (12) 

 

with the deterministic Euler scheme given as  

 

                                                              (13) 

 

The main difference between the stochastic 

iterative scheme (7) and the deterministic Euler 

iterative scheme is the term  

  

     (14) 

 

where   *   𝑡   + is a Wiener process. 

Chapter two acknowledges that 

 (   )   , and  ,(   )
 -  𝑡    𝑡  

     
are Gaussian random variables (which are 

independent). 

Using the above notations, the Euler discrete time 

approximation was rewritten as 

 

                            (15)  

 

An illustration of the simulation of the Euler’s 

time discrete approximation is given below: 

Let the Ito process   *   𝑡   + satisfies the 

linear SDE 

 

              (16) 

 

with the initial condition 𝑥   
   

Here, the drift coefficient is  

 

 
 

and diffusion coefficient is   

𝑡0 =  0 <  1 <  2 < ⋯ <   < ⋯ <   =   , 

  +1 =   +  (  ,  )(  +1    )+  (  ,  )(   +1
    ) ,    

   𝑡0
=  0,     =  (  )   

      =   +1       

  = max      

   
  +1 =   +  

𝑜𝑟
  =   +   

 

𝑑 𝑡 =  (𝑡, 𝑡)𝑑𝑡     

   +1 =   +  (  ,  )(  +1    ),  = 0(1)(  1)    

    =    +1
    ,  = 0(1)(  1)      

  +1 =   +    +        

  𝑑 𝑡 =   𝑡𝑑𝑡 +   𝑡𝑑 𝑡 , 𝑡  0,   

 (𝑡, ) =    
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Now to stimulate a sample path of the Euler 

scheme for (16), the initial approximation was 

taken from the initial value       , and 

proceed to generate respectively using  

 

                                                                     (17) 

with drift and diffusion coefficients well 

defined. 

For instance, if  

 (𝑡  )      ( )  
 

 
     ( ) ,    (𝑡  )  

    ( ) 
with initial condition              

Sample path can be generated for this stochastic 

process (in order to do this, numeric values must 

be assigned to   and   ). To this effect, let 

      and       be chosen arbitrary, the 

sample path with 100 time-steps is generated in 

Figure 1. 

 

 

 
 

Figure 1. . 

 

 

Strong convergence of the explicit Euler 

scheme 

An approximating stochastic process   

converges in strong sense if there is existing 

constant   and      with order   ,   ) 

satisfying with a 

maximum step size   (    )  in any time 

discretization. When      the strong 

convergence of the stochastic Euler scheme 

becomes a mere deterministic Euler 

convergence scheme for the approximation of 

ordinary differential equation. 

According to Milstein (1974), this strong 

convergence criterion is a measure of the 

absolute error at the final time interval   given 

as  

 
 

which can be deduced applying the Lyapunov 

inequality coupled with the root mean square 

error to be 

 

 
 

Platen (1981) and Kloeden (1992) argued that the 

order of strong convergence mechanism is much 

higher in the deterministic case than the 

stochastic case. In fact, the Euler approximation 

(7) has a strong convergence of order       in 

contrast with the Euler-approximation for 

deterministic ordinary differential equation, 

which has a strong order . 

 (𝑡, ) =    

  +1 =   +  (  ,  )  +  (  ,  )   , = 0,1,2,3,…,   
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The theorem below is relevant in estimating the 

order of convergence of the stochastic explicit 

Euler scheme. 

 

Theorem 1: Kloeden and Platen (1992) 

Assuming that  

 

             (18) 

 

           (19) 

 

                                    (20) 

 

          (21) 

 

and  

 

                                                                     (22) 

 

for all 𝑠 𝑡  ,   -  and 𝑥     , where 

      ( )  are independent of      Then for 

the EP the estimate  

 

           (23) 

 

Holds, where     is independent of      
(Kloeden and Platen, 1992) 

 

Weak convergence criterion of the stochastic 

explicit Euler scheme 

An approximating stochastic process   

converges in weak sense, when there exist a 

constant   and      (a positive constant) 

with order   (   - and a polynomial   such 

that  

 

 
 

with a maximum step size   (    )  in any 

time discretization. When     , the weak 

convergence is the deterministic convergence 

criterion for the approximation of ordinary 

differential equation with . 

Talay (1984) and Milstein (1978) stated that the 

explicit Euler-Maruyama approximation of a 

stochastic process has a weak order of 1.0, which 

is far superior to its strong convergence of order 

0.5. Similarly, Platen and Mukulericius (1986) 

provide that the Euler-Maruyama converges with 

a weak order of 1.0 when the drift and diffusion 

coefficient of (7) are Holder continuous and 

Lipschitz continuous with fractional power.  

 

The explicit Milstein scheme 

Recall that the stochastic Taylors Formulae (STF) 

for the SDE (7) in the interval 𝑡 ≤ 𝑡 ≤   is 

given as  

 

                                                              (24) 

   

where, 

 
 

Now, if we let 𝑔(𝑡 𝑥)  𝑥 in the STF (24), we 

obtain 

 

                                                              (25) 

 

which is a more general STF representation of the 

SDE (6) (Reddy and Clinton, 2016) 

Now, if the last term of (25) is added to the 

numerical scheme in (3.21), the obtained Milstein 

scheme will be given as  

 

                                                                         (26) 

 

Here, the additional term came from the double 

stochastic integral in (25), which can be 

computed using the Wiener increment     

                                               
                                                                         (27) 

                                           (    
2) <     

 (       
2)

1

2 ≤  1 0

1
2      

   (𝑡, 𝑥)   (𝑡, ) +   (𝑡, 𝑥)   (𝑡, ) ≤  2 𝑥        

  (𝑡, 𝑥) +   (𝑡, 𝑥) ≤  3(1 +  𝑥 )      

  (𝑠, 𝑥)   (𝑡, 𝑥) +   (𝑠, 𝑥)   (𝑡, 𝑥) ≤  4(1 +  𝑥 ) 𝑠  𝑡 
1

2   

 (       
2) ≤  5 0

1
2      

  ( (  ))  ( (  )) ≤   0
 
  , 

 (𝑥) = 𝑥 

𝑔(𝑡, 𝑡) = 𝑔 𝑡, 𝑡0
 + 𝑑1 𝑡, 𝑡0

  𝑑𝑠
𝑡

𝑡0
+ 𝑑2 𝑡, 𝑡0

  𝑑 𝑠 +
𝑡

𝑡0
𝑑3 𝑡, 𝑡0

   𝑑 𝑠1

𝑠2

𝑡0
𝑑 𝑠2

+
𝑡

𝑡0
 ,  

  

𝑑1(𝑡, 𝑥) =  (𝑡, 𝑥)𝑔′(𝑡, 𝑥)+
1

2
  (𝑡, 𝑥) 

2
𝑔′′ (𝑡, 𝑥),   

𝑑2(𝑡, 𝑥) =  (𝑡, 𝑥)𝑔′(𝑡, 𝑥),  

𝑑3(𝑡, 𝑥) =  (𝑡, 𝑥){ (𝑡, 𝑥)𝑔′′(𝑡, 𝑥)+  ′(𝑡, 𝑥)𝑔′(𝑡, 𝑥)}. 

 𝑡 =  𝑡0
+    𝑡0

  𝑑𝑠
𝑡

𝑡0
+    𝑡0

  𝑑 𝑠 +
𝑡

𝑡0
   𝑡0

  ′  𝑡0
   𝑑 𝑠1

𝑠2

𝑡0
𝑑 𝑠2

+
𝑡

𝑡0
  ,  

  +1 =   +     +     +
1

2
  ′*(   )

2    +,  = 0(1)(  1).   

    𝑑 𝑠1

𝑠2

𝑡0
𝑑 𝑠2

=
1

2
*(   )

2    +
𝑡
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Generally, adding more stochastic integral 

terms in multiplicity to (24), a more strong 

Taylor approximation (STAs) was obtained. 

Such stochastic integral terms provides 

additional information about the discretized 

sample path. The theorem below gives 

conditions for Milstein scheme to ensure strong 

convergence of order      . 

 

Theorem 2:  (Kloeden and Platen, 1992) 

Assuming that  

 

 (    
 )                (28) 

 

 (       
 )

 

 ≤     

 
              (29) 

 

 | (𝑡 𝑥)   (𝑡  )| ≤    𝑥               (30) 

 

 
              (31) 

 

 
 

and  

 

 
                                    (32) 

 

|   (𝑠 𝑥)     (𝑡 𝑥)| ≤   (   𝑥 ) 𝑠  𝑡 
 

   

|𝐿     (𝑠 𝑥)  𝐿     (𝑡 𝑥)| ≤   (  

 𝑥 ) 𝑠  𝑡 
 

    

for all 𝑠 𝑡  ,   - and 𝑥          …   , 

and         …     where       ( )  are 

independent of      Then for the Milstein 

scheme the estimate  

 

           (33) 

 

holds where     is independent of      
(See the proof in Kloeden and Platen, (1992) 

RESULTS 

Euler and Milstein schemes for the geometric 

Brownian motion 

Implementing the Euler and Milstein schemes on 

the Geometric Brownian motion (5), the 

following obtained results were presented in 

graphs and tables (Table 1 and Figure 2). The 

maple generated GBM with timesteps 100 having 

5 replications are the already existing drift and 

volatility; while the Euler generated GBM with 

timesteps 100 having 5 replications are the newly 

generated drift and volatility. 

 

 
Table 1. Explicit Euler approximations for the GBM. 
 

  1 2 3 4 

𝑡 0.5 1 1.5 2 

   0.945 0.86 0.85 0.84 
 

n = number, t = time and Sn = State Variable. 

 

 
Table 2. Milstein approximations for the GBM. 
 

  1 2 3 4 

𝑡 0.5 1 1.5 2 

   1.2 1.46 1.65 0.68 
 

n = number, t = time and Sn = State Variable. 

 

 

DISCUSSION  

The explicit Euler and Milstein schemes have 

been employed to solve the Geometric Brownian 

Motion equation. It was done successively with 

MAPLE 18 based on the following relations: 

 

(i) The parameter 𝑠   defines the initial value of 

the underlying stochastic process, which is a real 

constant. 

(ii) The parameter   is the drift. In the simplest 

case of a constant drift   is a real number. Time-

dependent drift can be set either as an algebraic 

expression or as a Maple procedure. If   is given 

as an algebraic expression, then the parameter t 

should be passed to specify which variable in   

should be used as a time variable.  

(iii) The parameter   is the volatility. Dissimilar 

to the drift parameter, the volatility can be 

constant or time-dependent. Unlike drift, 

volatility can involve other (one-dimensional) 

stochastic variables. 

(iv) The scheme options specify the  

|  1(𝑡, 𝑥)    1 (𝑡, )| ≤  2 𝑥             

|𝐿 1  2(𝑡, 𝑥)  𝐿 1  2 (𝑡,  )| ≤  2 𝑥            

| (𝑡, 𝑥)|+ |𝐿  (𝑡, 𝑥)| ≤  3(1 +  𝑥 )  

|  1(𝑡, 𝑥)|+ |𝐿   2(𝑡, 𝑥)| ≤  3(1 +  𝑥 )       

|𝐿 𝐿 1  2(𝑡, 𝑥)| ≤  3(1 +  𝑥 )   

| (𝑠, 𝑥)   (𝑡, 𝑥)| ≤  4(1 +  𝑥 ) 𝑠  𝑡 
1

2     

 (       
2) ≤  5 0

1
2      



 189 

Nigerian Journal of Science and Environment, Vol.18 (1) (2020) 
 

 
 

Figure 2. PathPlot for one-dimensional Brownian motion with constant drift and 
volatility using the Euler scheme. 

 

 

 
 

Figure 3. Path plot for one-dimensional Brownian motion with constant drift and 
volatility using the Milstein scheme. 



 190 

Oduselu-Hassan and Njoseh                                                                        Nigerian Journal of Science and Environment, Vol.18 (1) (2020) 
 

discretization technique used for simulation of 

this process. The standard Euler and Milstein 

schemes were used. When a scheme is set to 

unbiased the transition density was used to 

simulate a value s (t + dt) given S (t). This 

scheme is appropriate in the case of a time-

dependent drift and/or volatility. 

(v) In the multi-dimensional case, the drift and 

the volatility parameter must be constant. The 

drift parameter must be specified as a Vector 

and the volatility parameter must be a 

symmetric matrix that defines the covariance 

between the individual components. 

Now, discretizing a one dimensional GBM via 

explicit Euler scheme with constant drift and 

volatility at     shows the effect of random 

walk in stock prices. It shows that the degree of 

random walk is chaotic and as such with timely 

variation of the drift and parameters can savage 

the stock price situation. In like manner, the 

GBM through explicit Milstein scheme 

produced a nearly centered process whose 

random walk is clustered with constant drift 

and volatility parameters. This suggests that the 

stock price situation will be likely savaged if 

the stock price market is sabotaged. 

 

 

Conclusion 

Numerical methods have been used to solve a 

lot of complex mathematical formulations. 

This is because most analytic methods are so 

complex and difficult to implement. Stochastic 

differential equations (SDEs) are no exception. 

There are no precise analytic solvers for SDEs. 

Numerically, SDEs are often analysed through 

computer simulation. Thus, this paper solves 

the GBM equation by means of MAPLE 18 

software, using both the explicit Euler and 

Milstein schemes. This stochastic model is 

mostly relevant in option pricing and stock 

price analysis. The results have shown that the 

drift and volatility are the parameters that 

determine system randomness and effects.  
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