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The Daftardar-Jafari method (DJM) given by Daftardar-Gejji and Jafari is used to obtain approximate 

solutions to the time-fractional attraction Keller-Segel (TF-AKS) model in this work. The 

implementation of the method on the TF-AKS model is in two folds with respect to the chemotactic 

sensitivity function  (𝑣), namely:  (𝑣)   and  (𝑣)  𝑣. The method consists of a very simple 

algorithm which is used to generate iterative solutions of the model. The result obtained further 

demonstrates the efficiency and reliability of the method, hence giving it a wider applicability to time-

fractional order partial differential equations from mathematical biology. 

 

Key words: Daftardar-Jafari method, time-fractional Keller-Segel model, Caputo derivative, 
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INTRODUCTION 

Elements of fractional calculus have been 

extensively used in the formulation of linear 

and nonlinear mathematical models describing 

physical situations arising in dynamical control 

theory, electrochemistry, electrical circuits, 

feedback systems, biology, fluid and gas 

dynamics (Baleanu et al., 2012; Miller and 

Ross;1993; Oldham and Spanier, 2008; 

Podlubny, 1999; Samko et al., 1993). 

Determining exact analytic solutions to this 

class of problems proves more difficult than 

their classical integer-order counterparts. 

Fortunately, several approximation techniques 

for constructing analytic solutions for this class 

of problems have been developed and 

extensively used by many authors. Some of 

these techniques include the Adomian 

decomposition method (Dhaigude and Birajdar, 

2012), variational iteration method, homotopy 

analysis method (Dehghan and Mana, 2010; 

Hashin et al., 2009), homotopy perturbation 

method (Momani and Odibat, 2007), homotopy 

decomposition method (Atangana and 

Alabaraoye; 2013), modified homotopy 

analysis transform method (Sunil et al., 2017) 

and differential transform method (Arikoglu 

and Ozkol, 2007; Odibat et al., 2008). 

Recently, Daftarder-Gejji and Jafari (2006) used 

the Daftarder-Jafari method (DJM) to construct 

approximate solutions to both linear and 

nonlinear differential equations with integer order 

or fractional order derivatives. This work applies 

the DJM to construct approximate analytic 

solutions to the one-dimensional time-fractional 

attraction Keller-Segel (TF-AKS) chemotaxis 

model: 

 

                                                
                                                                           (1) 

 

with associated boundary conditions 

 

                                                                           (2) 

 

and initial conditions 

 

               (3) 

 

where      is a bounded open interval,   ,  

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

=  1
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 −

𝜕
𝜕𝑥

 𝑢(𝑥, 𝑡)
𝜕𝑣(𝑥, 𝑡)
𝜕𝑥

  ,

𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

=  2
𝜕2𝑣(𝑥, 𝑡)
𝜕𝑥2 − 𝜆𝑣(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡),     

                                                               (1) 

𝜕𝑢(𝛼, 𝑡)

𝜕𝑥
=
𝜕𝑢(𝛽, 𝑡)

𝜕𝑥
=
𝜕𝑣(𝛼, 𝑡)

𝜕𝑥
=
𝜕𝑣(𝛽, 𝑡)

𝜕𝑥
= 0,    (𝛼,𝛽) ∈   ,                                                             

𝑢(𝑥, 0) = 𝑢0(𝑥),      𝑣(𝑥, 0) = 𝑣0(𝑥)                                                                          
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  , 𝑎, and λ are positive constants of biological 

importance,  (𝑣) is the chemotatic sensitivity 

function and and 𝛼 is the parameter 

representing the order of the fractional 

derivative. The unknown functions, 𝑢  
 𝑢(𝑥 𝑡) and 𝑣   𝑣(𝑥 𝑡)  denote the density of 

cellular species and concentration of the 

chemo-attractive substance, respectively. 

Additionally, the chemotatic term 

  (𝑢(𝑥 𝑡)   (𝑣(𝑥 𝑡))) measures the cellular 

sensitivity to the chemical. When 𝛼     and 

 (𝑣)     𝑣 with      , the system (1.1)-

(1.3) reduces to the well-known classical one-

dimensional attraction Keller-Segel chemotaxis 

model proposed in the 1970’s by Keller and 

Segel (1970) to describe the aggregation 

process of cellular slime mold in response to an 

attractive chemical signal. 

Chemotaxis is an essential means by which 

cellular entities interact within their 

environment. It is known to be a means of 

communication among motile marine 

organisms as they orient their motion either in 

the direction of an attraction-type chemical 

signal or away from a repulsion-type chemical 

signal in their quest for mates, nutrients and 

survival. It also dictates the process of self-

organization and accounts for pattern formation 

in many biological species. Among higher 

organisms, chemotaxis plays a key role in 

cellular organization and positioning during 

embryogenesis, tumor cell invasion and cancer 

metastisis of living tissues (Hillen and Painter, 

2009; Horstmann, 2003) and the references 

therein for detailed survey on the Keller-Segel 

chemotaxis model and several of its possible 

variants which have been studied from different 

mathematical perspectives. 

 

Some important tools from fractional calculus 

Some definitions and properties of fractional 

order differential operators from fractional 

calculus (Podlubny, 1999; Samko et al., 1993) 

are:  

 

Definition 1  

A real function  (𝑡) 𝑡    is said to be in the 

space     ∈  , if there exists a real number 

𝑝(  ) such that  (𝑡)  𝑡  (𝑡), where  (𝑡) ∈
     ). It is said to be in the space   

  if 

 ( ) ∈     ∈    

 

Definition 2 

The Riemann-Liouville fractional integral of 

order    , of a function  ∈      −   is 

defined as  

 

                 (4) 

 

Definition 3  
The (left-sided) Caputo fractional derivative of 

order   of a function  ( ) ∈    
    is defined as 

 

   (5) 

Note that 

 

 
 

FUNDAMENTAL IDEA OF THE DJM 

 

The study considers the following nonlinear 

functional equation 

 

                  (6)   

   

Here,    (𝑥 𝑡) is an unknown function,  

                    

 𝑡
𝛼 (𝑡) =  

 (𝑡),                                                               𝛼 = 0, 𝑡 > 0,
1

Γ(𝛼)
 (𝑡 − 𝜂)𝛼−1 (𝜂) 𝜂
𝑥

0
,                        𝛼 > 0, 𝑡 > 0.

                                     

  𝑡
𝛼 (𝑥, 𝑡) =   𝑡

 −𝛼
𝜕  (𝑥, 𝑡)

𝜕𝑡 
=

 
 
 

 
 1

Γ(m −  )
  (𝑡 − 𝜂) −𝛼−1

   (𝑥, 𝜂)

 𝑡 
 𝜂

𝑡

0

 , − 1 < 𝛼 ≤  , ∈  ,

   (𝑥, 𝑡)

 𝑡 
,                                                          𝛼 =  ∈  .                           

       

 𝑡
𝛼 𝑐 𝑡

𝛼 (𝑥, 𝑡) =  (𝑡) −   𝑘 (𝑥, 0+)
𝑡𝑘

Γ(𝑘 + 1)
        𝑎𝑛            𝑡

𝛼𝑡𝛾 =
Γ(𝛾 + 1)

Γ(γ +  + 1)
𝑡𝛾+𝛼 ∙             

 −1

𝑘=0

 

                  

 (𝑥, 𝑡) =  (𝑥, 𝑡) + 𝑁  (𝑥, 𝑡) .                                                                          (3.1)      
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𝑁     is a nonlinear operator on a Banach 

space B and    (𝑥 𝑡) is a non-homogenous 

source term. The method asserts that the 

solution of (6) in the form of the indefinite 

series   

 

                              (7) 

 

and the nonlinear operator 𝑁 is expressed as 

the decomposition series: 

 

                                                                       (8) 

 

Inserting (7) and (8) into (6), the study obtains 

 

                                                                      (9) 

 
from which the following recurrence relation 

was obtain 

 

                                                                     (10) 

 

It is easy to see from (10) that 

 

                                                                     (11) 

and 

 

                               
                                                                     (12) 

 

The nth-term approximation of the solution of 

(6) and (7) is then given by the truncated series 

∑   (𝑥 𝑡) ∙
   
    

Now, if 𝑁 is a contraction mapping in B, that 

is, 

 

 
 

then 

 
 

and the series ∑   (𝑥)
 
    converges absolutely 

and uniformly to a solution of (6) (Cherruault, 

1989) and is unique owing to the Banach fixed 

point theorem (Jerri, 1999). The convergence of 

the DJM has been proved in Hemeda (2013) and 

Bhalekar and Daftardar-Gejji (2011). 

 

 

DJM ALGORITHM FOR COUPLED 

SYSTEM OF TIME-FRACTIONAL PDES 

Consider the following nonlinear coupled system 

of time-fractional PDEs 

 

                                     
                                                                         (13) 
 

with initial data 

                                                                         (14) 
 

where  −   𝛼 ≤  ∈      and    are 

nonlinear functions of 𝑢  and their partial 

derivatives and    and    are inhomogeneous 

source terms. Taking appropriate fractional 

integral operator   
  from   to 𝑡 on both sides of 

each equation in (13), it was easy to transform 

(14) to a system of nonlinear functional 

equations: 

 

 

                       (15) 

 

Where 

 

                      
                                                                         (16) 

 

For        and (7)-(10) was obtained from the 

recursive relations 

 (𝑥, 𝑡) = ∑  𝑘(𝑥, 𝑡)                                                                                             
𝑘=0 (7)     

𝑁(∑  𝑘
 
𝑘=0 ) = 𝑁( 0) + ∑  𝑁 ∑  𝑗

𝑘
𝑗=0  − 𝑁 ∑  𝑗

𝑘−1
𝑗=0   ∙                                            (3.3) 

𝑘=1 (8)     

  𝑘 =  + 𝑁( 𝑘) +   𝑁   𝑗

𝑘

𝑗=0

 − 𝑁   𝑗

𝑘−1

𝑗=0

  ,                                               (3.4)

 

𝑘=1

 

𝑘=0

 

 
 
 

 
 
 0 =                                                                                          

 1 = 𝑁( 𝑜)                                                                              

 𝑛+1 = 𝑁   𝑘

𝑛

𝑘=0

 − 𝑁   𝑘

𝑛−1

𝑘=0

 ,              𝑛 = 1,2,⋯ .

                                   (3.5) 

( 1 +  2 + ⋯+  𝑛+1) = 𝑁( 0 +  1 +  2 + ⋯+  𝑛),       𝑛 = 1,2,⋯,                                     

∑  𝑘(𝑥, 𝑡) =  (𝑥, 𝑡) + 𝑁(∑  𝑘(𝑥, 𝑡) 
𝑘=0 ).                                                          (3.7) 

𝑘=0 ( 

 𝑁(𝑥) − 𝑁(𝑦) ≤ 𝑘 𝑥 − 𝑦 ,            0 < 𝑘 < 1, 

  𝑛+1 =   𝑁( 0 +  1 +  2 + ⋯+  𝑛) − 𝑁( 0 +  1 +  2 + ⋯+  𝑛−1)   

      ≤ 𝑘𝑛+1  0 ,       𝑛 = 0,1,2,⋯. 

 𝑡
𝛼𝑢1= 1(𝑢 ,𝑣,𝜕𝑢 ,𝜕𝑣)+ 1(𝑥 ,𝑡),

 𝑡
𝛼𝑢2= 2(𝑢 ,𝑣,𝜕𝑢 ,𝜕𝑣)+ 2(𝑥 ,𝑡),

                                                                         (3.8)( 

𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑥, 0) = ℎ𝑘

1(𝑥) ,   
𝜕𝑘

𝜕𝑡𝑘
𝑣(𝑥, 0) = ℎ𝑘

2(𝑥),     𝑘 = 0,1,2,⋯ , − 1,                                      (3.9)  

𝑢1(𝑥, 𝑡) =  1 + 𝑁1(𝑢,𝑣),

𝑢2(𝑥, 𝑡) =  2 + 𝑁2(𝑢,𝑣),
                                                                                         

 
  =  

𝑡𝑘

Γ(𝑘 + 1)
ℎ𝑘
 (𝑥) +  𝑡

𝛼  (𝑥, 𝑡),

 −1

𝑘=0

𝑁 (𝑢, 𝑣) =  𝑡
𝛼  (𝑢, 𝑣,𝜕𝑢,𝜕𝑣).               
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                (17) 
 

from which the entire solution components of 

the IVP (13)-(14) computed. 

 

Approximate solution of the TF-AKS model 

using the DJM 

The DJM was used to obtain approximate 

analytic solution to the TF-AKS model (1)-(3). 

To this end, two cases were consider with 

respect to the chemotatic sensitivity function, 

namely,  (𝑣)      and  (𝑣)    𝑣 subject to 

the initial conditions 

 

             
                                                                     (18) 

 

 

Example 1 

 

 Assume that  (𝑣)     , then the TF-AKS 

model (1) reads 

 

                                                                     (19) 

 

Operating both sides of each equation in (19) 

by   
 and keeping track of the initial conditions 

in (18), also obtained was the following 

equivalent system of fractional integral equations 

 

                                                                     (20) 

where    𝑘  
       𝑘  

    and the 

nonlinear terms 𝑁 (𝑢 𝑣), 𝑁 (𝑢 𝑣) are defined as 

 

                                                                         (21) 

 

Accordingly, the solutions for (19) is giving by 

the series 

 

 
 

Furthermore, by the same steps leading to the 

recurrence relation (17), the following iterates 

were obtained: 

 

 
 
 
 
 
 

 
 
 
 
 
𝑢0(𝑥, 𝑡) =  1(𝑥, 𝑡),                                                                                                                                                   

 𝑣0(𝑥, 𝑡) =  2(𝑥, 𝑡) ,                                                                                                                                                   

𝑢1(𝑥, 𝑡) = 𝑁1 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)  ,                                                                                                                            

𝑣1(𝑥, 𝑡) = 𝑁2 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) ,                                                                                                                             

𝑢 +1(𝑥, 𝑡) = 𝑁1   𝑢𝑘(𝑥, 𝑡)

 

𝑘=0

, 𝑣𝑘(𝑥, 𝑡)

 

𝑘=0

 − 𝑁1   𝑢𝑘(𝑥, 𝑡)

 −1

𝑘=0

,  𝑣𝑘(𝑥, 𝑡)

 −1

𝑘=0

 ,                    (3.12) 

𝑣 +1(𝑥, 𝑡) = 𝑁2   𝑢𝑘(𝑥, 𝑡)

 −1

𝑘=0

,  𝑣𝑘(𝑥, 𝑡)

 −1

𝑘=0

 − 𝑁2   𝑢𝑘(𝑥, 𝑡)

 −1

𝑘=0

,  𝑣𝑘(𝑥, 𝑡)

 −1

𝑘=0

 ,                                

 = 1,2,…,                                                                                                                                                                  

 

𝑢(𝑥, 0) = 𝑘1 
−𝑥2

,       𝑣(𝑥, 0) = 𝑘2 
−𝑥2

.                                                       (4.1)( 

 

 

𝜕𝑢 (𝑥 ,𝑡)

𝜕𝑡
=  1

𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2 ,                                        

𝜕𝑣(𝑥 ,𝑡)

𝜕𝑡
=  2

𝜕2𝑣(𝑥 ,𝑡)

𝜕𝑥2 − 𝜆𝑣(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡).
                                                     (4.2)( 

 

𝑢(𝑥, 𝑡) =   1  +  𝑁1(𝑢, 𝑣),        𝑣(𝑥, 𝑡) =   2 + 𝑁2(𝑢, 𝑣)                                   

 
𝑁1(𝑢, 𝑣) =  𝑡

𝛼   1
𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2  ,                                        

𝑁2(𝑢, 𝑣) =  𝑡
𝛼   2

𝜕2𝑣(𝑥 ,𝑡)

𝜕𝑥2
− 𝜆𝑣(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡) 

                                             (4.4)( 

 
 
 

 
 𝑢(𝑥, 𝑡) =  𝑢𝑘(𝑥, 𝑡)

 

𝑘=0

                                         

𝑣(𝑥, 𝑡) =  𝑣𝑘(𝑥, 𝑡).

 

𝑘=0
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For a better approximation, the study continues 

in a similar manner to obtain more solution 

components for 𝑢 (𝑥 𝑡) and  𝑣 (𝑥 𝑡) for 

   . Finally the solution of the system is given 

as: 

 

 

 

                                                                  (22) 

 

 

Example 2 

 

Assume that  (𝑣)    𝑣, then the TF-AKS model (1) reads 

                                                    (23) 

 

Operating both sides of each equation in (23) by   
 and keeping track of the initial conditions in (18), 

the following equivalent system of fractional integral equations were obtained 

 

                                                                                                                   (24) 

𝑢0(𝑥, 𝑡) ∶= 𝑘1 
−𝑥2

, 

𝑣0(𝑥, 𝑡) ∶= 𝑘2 
−𝑥2

, 

𝑢1(𝑥, 𝑡) ∶=
2 1𝑘1(2𝑥

2 − 1) −𝑥
2
𝑡𝛼

Γ(𝛼 + 1)
, 

𝑣1(𝑥, 𝑡) ∶=
(4𝑥2 2𝑘2 + 𝑎𝑘1 − 𝜆𝑘2 − 2 2𝑘2) 

−𝑥2
𝑡𝛼

Γ(𝛼 + 1)
, 

𝑢2(𝑥, 𝑡) ∶=
4 1

2𝑘1(4𝑥
4 − 12𝑥2 + 3) −𝑥

2
𝑡2𝛼

Γ(2𝛼 + 1)
−

2 1𝑘1(2𝑥
2 − 1) −𝑥

2
𝑡𝛼

Γ(𝛼 + 1)
 

𝑣2(𝑥, 𝑡) ≔
 4 2

2𝑘2(4𝑥
4 − 12𝑥2 + 3) + 2(2𝑥2 − 1)(𝑎 1𝑘1 + 𝑎 2𝑘1 − 2𝜆 2𝑘2) − 𝜆(𝑎𝑘1 − 𝜆𝑘2)  

−𝑥2
𝑡2𝛼

Γ(2𝛼 + 1)
     

−
(4𝑥2 2𝑘2 + 𝑎𝑘1 − 𝜆𝑘2 − 2 2𝑘2) −𝑥

2
𝑡𝛼

Γ(𝛼 + 1)
,                                                                               

 

 𝑢3(𝑥, 𝑡) ∶=
8 1

3𝑘1(8𝑥
6 − 60𝑥4 + 90𝑥2 − 15) −𝑥

2
𝑡3𝛼

Γ(3𝛼 + 1)
−

8 1
2𝑘1(4𝑥

4 − 12𝑥2 + 3) −𝑥
2
𝑡2𝛼

Γ(2𝛼 + 1)
, 

𝑣3(𝑥, 𝑡) ∶=
8 2

3𝑘2(8𝑥
6 − 60𝑥4 + 90𝑥2 − 15) −𝑥

2
𝑡3𝛼

Γ(3𝛼 + 1)
−

2𝜆(2𝑥2 − 1)(𝑎 1𝑘1 + 2𝑎 2𝑘1 − 3𝜆 2𝑘2) 
−𝑥2

𝑡3𝛼

Γ(3𝛼 + 1)

                    

+
4(4𝑥4 − 12𝑥2 + 3)(𝑎 1

2𝑘1 + 𝑎 1 2𝑘1 + 𝑎 2
2𝑘1 − 3𝜆 2

2𝑘2) −𝑥
2
𝑡3𝛼

Γ(3𝛼 + 1)
+
𝜆2(𝑎𝑘1 − 𝜆𝑘2) −𝑥

2
𝑡3𝛼

Γ(3𝛼 + 1)

−
8 2

2𝑘2(4𝑥4 − 12𝑥2 + 3) −𝑥
2
𝑡2𝛼

Γ(2𝛼 + 1)
−

2(4𝑥2 − 2)(𝑎 1𝑘1 + 𝑎 2𝑘1 − 2𝜆 2𝑘2) −𝑥
2
𝑡2𝛼

Γ(2𝛼 + 1)
                   

+
2𝜆(𝑎𝑘1 − 𝜆𝑘2) −𝑥

2
𝑡2𝛼

Γ(2𝛼 + 1)
.                                                                                                                                  

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯

𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + 𝑣3(𝑥, 𝑡) + ⋯
                                               

 
 

 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=  1

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
−
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
− 𝑢(𝑥, 𝑡)

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
,

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
=  2

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
− 𝜆𝑣(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡).                                

 

 
𝑢(𝑥, 𝑡) =   1  +  𝑁1(𝑢,𝑣),

𝑣(𝑥, 𝑡) =   2 + 𝑁2(𝑢,𝑣),
                                                                          



 

63 

Okposo                                                                                                         Nigerian Journal of Science and Environment, Vol.18 (1) (2020) 
 

where    𝑘  
       𝑘  

    and the nonlinear terms 𝑁 (𝑢 𝑣), 𝑁 (𝑢 𝑣) are defined as 

 

                                 (25) 

 

Accordingly, the solutions for (23) is given by the series 

 

 
 

Furthermore, by the same steps leading to the recurrence relation (17), the following few iterates were 

obtained: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝑁1(𝑢, 𝑣) =  𝑡

𝛼   1
𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2 −
𝜕𝑢 (𝑥 ,𝑡)

𝜕𝑥

𝜕𝑣(𝑥 ,𝑡)

𝜕𝑥
− 𝑢(𝑥, 𝑡)

𝜕2𝑣(𝑥 ,𝑡)

𝜕𝑥2  ,

𝑁2(𝑢, 𝑣) =  𝑡
𝛼   2

𝜕2𝑣(𝑥 ,𝑡)

𝜕𝑥2
− 𝜆𝑣(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡) .                              

                          (4.8)( 

 
 
 

 
 𝑢(𝑥, 𝑡) =  𝑢𝑘(𝑥, 𝑡)

 

𝑘=0

 ,                                       

𝑣(𝑥, 𝑡) =  𝑣𝑘(𝑥, 𝑡).

 

𝑘=0
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For a better approximation, the study continues 

with the same iterative steps to obtain more 

solution components for 𝑢 (𝑥 𝑡) and  𝑣 (𝑥 𝑡) 
for    . Finally the most approximate 

solution of the system is given as: 

 

               
(26) 

Numerical discussions 

 

Discussions of the numerical results obtained for 

the TF-AKS models were provided in Example 1 

and Example 2 above. The numerical simulations 

via graphical representations are given in 2D and 

3D for the approximate solutions for distinct 

values of 𝛼 and for the following set of 

theoretical parameters:  

 

𝑢2(𝑥, 𝑡)

∶=
1

Γ(3𝛼 + 1)Γ(𝛼 + 1)2
 8𝑥2 −2𝑥2

𝑘1 8𝑘2𝑥
2 −𝑥

2
− 2𝑥2 1 − 6𝑘2 

−𝑥2
+ 3 1 (4𝑥

2 2𝑘2 + 𝑎𝑘1

− 𝜆𝑘2 − 6 2𝑘2)Γ(2𝛼 + 1)𝑡3𝛼 

+
1

Γ(3𝛼 + 1)Γ(𝛼 + 1)2
 4 −2𝑥2

𝑘1 4𝑘2𝑥
2 −𝑥

2
− 2𝑥2 1 − 𝑘2 

−𝑥2
+  1 (8𝑥

4 2𝑘2 + 2𝑎𝑥2𝑘1

− 2𝜆𝑥2𝑘2 − 24𝑥2 2𝑘2 − 𝑎𝑘1 + 𝜆𝑘2 + 6 2𝑘2)Γ(2𝛼 + 1)𝑡3𝛼 

+
2 −𝑥

2
𝑘1 4𝑘2𝑥

2 −𝑥
2
− 2𝑥2 1 − 𝑘2 

−𝑥2
+  1  −2𝑘2 

−𝑥2
+ 4𝑘2𝑥

2 −𝑥
2
 𝑡2𝛼

Γ(2𝛼 + 1)

−
4 1 

−𝑥2
𝑘1 32𝑘2𝑥

4 −𝑥
2
− 4𝑥4 1 − 48𝑘2𝑥

2 −𝑥
2

+ 12𝑥2 1 + 6𝑘2 
−𝑥2

− 3 1 𝑡
2𝛼

Γ(  + 1)

+
2 −𝑥

2
𝑘1 4𝑘2𝑥

2 −𝑥
2
− 2𝑥2 1 − 𝑘2 

−𝑥2
+  1 𝑡

𝛼

Γ(𝛼 + 1)

+
8𝑥2 −2𝑥2

𝑘1 8𝑘2𝑥
2 −𝑥

2
− 2𝑥2 1 − 6𝑘2 

−𝑥2
+ 3 1 𝑘2𝑡

2𝛼

Γ(2𝛼 + 1)
, 

𝑣2(𝑥, 𝑡) ∶=
4 2

2𝑘2(4𝑥
4 − 12𝑥2 + 3) −𝑥

2
𝑡2𝛼

Γ(2𝛼 + 1)
−

2  −𝑥
2
 

2
𝑎𝑘1𝑘2(2𝑥 − 1)(2𝑥 + 1)𝑡2𝛼

Γ(2𝛼 + 1)

+
2(2𝑥2 − 1)(𝑎 1𝑘1 + 𝑎 2𝑘1 − 2𝜆 2𝑘2) 

−𝑥2
𝑡2𝛼

Γ(2𝛼 + 1)
−
𝜆(𝑎𝑘1 − 𝜆𝑘2) 

−𝑥2
𝑡2𝛼

Γ(2𝛼 + 1)

−
 −𝑥

2
(4𝑥2 2𝑘2 + 𝑎𝑘1 − 𝜆𝑘2 − 2 2𝑘2)𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑢0(𝑥, 𝑡) ∶= 𝑘1 
−𝑥2

, 

𝑣0(𝑥, 𝑡) ∶= 𝑘2 
−𝑥2

, 

𝑢1(𝑥, 𝑡) ∶= −
2 −𝑥

2
𝑘1 4𝑘2𝑥

2 −𝑥
2
− 2𝑥2 1 − 𝑘2 

−𝑥2
+  1 𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑣1(𝑥, 𝑡) ∶=
 −𝑥

2
(4𝑥2 2𝑘2 + 𝑎𝑘1 − 𝜆𝑘2 − 2 2𝑘2)𝑡

𝛼

Γ(𝛼 + 1)
, 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯

𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + ⋯
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Figures 1(a)-(d) shows the surface graphs for 

the chemotatic cell density and chamoattractant 

concentration in Example 1 different values of 

𝛼 while Figures 2(a)-(d) shows the surface 

graphs for the chemotatic cell density and 

chamoattractant concentration in Example 2 for 

different values of 𝛼. For the different values of 

𝛼  the graphs show close similarities, indicating 

continuous dependence on the fractional 

parameter 𝛼  
 

 

 
 

Figure 1. (a)-(d): 3D surface graphs representations for the approximate solution (22): (a) u(x, t) at α = 1 (b) u(x, t)  at α = 0.85 (c) 
v(x, t) at α = 1 (d) v(x, t)  at α = 0.85. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 = 0.5,  2 = 3, 𝑘1 = 120, 𝑘2 = 160, 𝑎 = 1, 𝜆 = 2,  = 1. 
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Figure 2. (a)-(d): 3D surface graphs representations for the approximate solution (26): (a) u(x, t) at α = 1 (b) u(x, t)  at α = 0.85 (c) 
v(x, t) at α = 1 (d) v(x, t)  at α = 0.85. 

 

 

Conclusions 

The mathematical model for the one-

dimensional time-fractional attraction Keller-

Segel (TF-AKS) model with different 

chemotactic sensitivity functions were 

investigated in this paper, using the DJM. The 

proposed method works very well for both 

linear and nonlinear systems of differential 

equations with either integer order or fractional 

order differential operators. One very 

important advantage of the technique used is 

that it does not require discretization of 

variables, perturbation or any form of 

restrictive assumptions. It is straightforward, 

very easy to implement and computationally 

attractive than many other methods. It is also a 

very efficient analytical method which 

provides a simple iterative algorithm that could 

be extended to a wide class of models 

described by coupled systems of linear and 

nonlinear time-fractional partial differential 

equations arising in mathematical biology and 

other areas of science. 
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