ON APPROXIMATE SOLUTIONS TO A COUPLED ONE-DIMENSIONAL TIME FRACTIONAL KELLER-SEGEL MODEL

Okposo I. Newton
Department of Mathematics, Delta State University, Abraka, P. M. B. 1, Delta State, Nigeria. E-mail: newstar4sure@yahoo.com.

Accepted 21 ${ }^{\text {st }}$ May, 2020

The Daftardar-Jafari method (DJM) given by Daftardar-Gejji and Jafari is used to obtain approximate solutions to the time-fractional attraction Keller-Segel (TF-AKS) model in this work. The implementation of the method on the TF-AKS model is in two folds with respect to the chemotactic sensitivity function $\chi(v)$, namely: $\chi(v)=1$ and $\chi(v)=v$. The method consists of a very simple algorithm which is used to generate iterative solutions of the model. The result obtained further demonstrates the efficiency and reliability of the method, hence giving it a wider applicability to timefractional order partial differential equations from mathematical biology.

Key words: Daftardar-Jafari method, time-fractional Keller-Segel model, Caputo derivative, approximate solution.

INTRODUCTION

Elements of fractional calculus have been extensively used in the formulation of linear and nonlinear mathematical models describing physical situations arising in dynamical control theory, electrochemistry, electrical circuits, feedback systems, biology, fluid and gas dynamics (Baleanu et al., 2012; Miller and Ross;1993; Oldham and Spanier, 2008; Podlubny, 1999; Samko et al., 1993). Determining exact analytic solutions to this class of problems proves more difficult than their classical integer-order counterparts. Fortunately, several approximation techniques for constructing analytic solutions for this class of problems have been developed and extensively used by many authors. Some of these techniques include the Adomian decomposition method (Dhaigude and Birajdar, 2012), variational iteration method, homotopy analysis method (Dehghan and Mana, 2010; Hashin et al., 2009), homotopy perturbation method (Momani and Odibat, 2007), homotopy decomposition method (Atangana and Alabaraoye; 2013), modified homotopy analysis transform method (Sunil et al., 2017) and differential transform method (Arikoglu and Ozkol, 2007; Odibat et al., 2008).

Recently, Daftarder-Gejji and Jafari (2006) used the Daftarder-Jafari method (DJM) to construct approximate solutions to both linear and nonlinear differential equations with integer order or fractional order derivatives. This work applies the DJM to construct approximate analytic solutions to the one-dimensional time-fractional attraction Keller-Segel (TF-AKS) chemotaxis model:

$$
\begin{align*}
& \frac{\partial u(x, t)}{\partial t}=d_{1} \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial}{\partial x}\left(u(x, t) \frac{\partial v(x, t)}{\partial x}\right) \\
& \frac{\partial v(x, t)}{\partial t}=d_{2} \frac{\partial^{2} v(x, t)}{\partial x^{2}}-\lambda v(x, t)+a u(x, t), \tag{1}
\end{align*}
$$

with associated boundary conditions

$$
\begin{equation*}
\frac{\partial u(\alpha, t)}{\partial x}=\frac{\partial u(\beta, t)}{\partial x}=\frac{\partial v(\alpha, t)}{\partial x}=\frac{\partial v(\beta, t)}{\partial x}=0, \quad(\alpha, \beta) \in I_{.} \tag{2}
\end{equation*}
$$

and initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x) \tag{3}
\end{equation*}
$$

where $I \subset \mathbb{R}$ is a bounded open interval, d_{1},
d_{2}, a, and λ are positive constants of biological importance, $\chi(v)$ is the chemotatic sensitivity function and and α is the parameter representing the order of the fractional derivative. The unknown functions, $u=$ $u(x, t)$ and $v=v(x, t)$, denote the density of cellular species and concentration of the chemo-attractive substance, respectively. Additionally, the chemotatic term $D_{x}\left(u(x, t) D_{x} \chi(v(x, t))\right)$ measures the cellular sensitivity to the chemical. When $\alpha=1$ and $\chi(v)=\chi v$ with $\chi>0$, the system (1.1)(1.3) reduces to the well-known classical onedimensional attraction Keller-Segel chemotaxis model proposed in the 1970's by Keller and Segel (1970) to describe the aggregation process of cellular slime mold in response to an attractive chemical signal.
Chemotaxis is an essential means by which cellular entities interact within their environment. It is known to be a means of communication among motile marine organisms as they orient their motion either in the direction of an attraction-type chemical signal or away from a repulsion-type chemical signal in their quest for mates, nutrients and survival. It also dictates the process of selforganization and accounts for pattern formation in many biological species. Among higher organisms, chemotaxis plays a key role in cellular organization and positioning during embryogenesis, tumor cell invasion and cancer metastisis of living tissues (Hillen and Painter,

2009; Horstmann, 2003) and the references therein for detailed survey on the Keller-Segel chemotaxis model and several of its possible variants which have been studied from different mathematical perspectives.

Some important tools from fractional calculus

Some definitions and properties of fractional order differential operators from fractional calculus (Podlubny, 1999; Samko et al., 1993) are:

Definition 1

A real function $f(t), t>0$ is said to be in the space $C_{\mu}, \mu \in \mathbb{R}$, if there exists a real number $p(>\mu)$ such that $f(t)=t^{p} g(t)$, where $g(t) \in$ $C[0, \infty)$. It is said to be in the space C_{μ}^{m} if $f^{(m)} \in C_{\mu}, m \in \mathbb{N}$.

Definition 2

The Riemann-Liouville fractional integral of order $\alpha \geq 0$, of a function $f \in C_{\mu}, \mu \geq-1$, is defined as
$I_{t}^{\alpha} f(t)= \begin{cases}f(t), & \alpha=0, t>0, \\ \frac{1}{\Gamma(\alpha)} \int_{0}^{x}(t-\eta)^{\alpha-1} f(\eta) d \eta, & \alpha>0, t>0 .\end{cases}$
(4)

Definition 3

The (left-sided) Caputo fractional derivative of order α of a function $f(t) \in C_{-1}^{m}$, is defined as
${ }_{c} D_{t}^{\alpha} f(x, t)=I_{t}^{m-\alpha} \frac{\partial^{m} f(x, t)}{\partial t^{m}}= \begin{cases}\frac{1}{\Gamma(m-\alpha)}\left[\int_{0}^{t}(t-\eta)^{m-\alpha-1} \frac{d^{m} f(x, \eta)}{d t^{m}} d \eta\right], m-1<\alpha \leq m, m \in \mathbb{N}, \\ \frac{d^{m} f(x, t)}{d t^{m}}, & \alpha=m \in \mathbb{N} .\end{cases}$

Note that

$$
I_{t}^{\alpha}\left(c D_{t}^{\alpha} f(x, t)\right)=f(t)-\sum_{k=0}^{m-1} D^{k} f\left(x, 0^{+}\right) \frac{t^{k}}{\Gamma(k+1)} \quad \text { and } \quad I_{t}^{\alpha} t^{\gamma}=\frac{\Gamma(\gamma+1)}{\Gamma(\gamma+\alpha+1)} t^{\gamma+\alpha}
$$

FUNDAMENTAL IDEA OF THE DJM

The study considers the following nonlinear functional equation
$\psi(x, t)=f(x, t)+N(\psi(x, t))$.
Here, $\psi=\psi(x, t)$ is an unknown function,
$N: B \rightarrow B$ is a nonlinear operator on a Banach space B and $f=f(x, t)$ is a non-homogenous source term. The method asserts that the solution of (6) in the form of the indefinite series
$\psi(x, t)=\sum_{k=0}^{\infty} \psi_{k}(x, t)$
and the nonlinear operator N is expressed as the decomposition series:
$N\left(\sum_{k=0}^{\infty} \psi_{k}\right)=N\left(\psi_{0}\right)+\sum_{k=1}^{\infty}\left[N\left(\sum_{j=0}^{k} \psi_{j}\right)-N\left(\sum_{j=0}^{k-1} \psi_{j}\right)\right]$

Inserting (7) and (8) into (6), the study obtains

$$
\begin{equation*}
\sum_{k=0}^{\infty} \psi_{k}=f+N\left(\psi_{k}\right)+\sum_{k=1}^{\infty}\left[N\left(\sum_{j=0}^{k} \psi_{j}\right)-N\left(\sum_{j=0}^{k-1} \psi_{j}\right)\right] \tag{9}
\end{equation*}
$$

from which the following recurrence relation was obtain

$$
\left\{\begin{array}{l}
\psi_{0}=f \tag{10}\\
\psi_{1}=N\left(\psi_{0}\right) \\
\psi_{n+1}=N\left(\sum_{k=0}^{n} \psi_{k}\right)-N\left(\sum_{k=0}^{n-1} \psi_{k}\right), \quad n=1,2, \cdots
\end{array}\right.
$$

It is easy to see from (10) that

$$
\begin{equation*}
\left(\psi_{1}+\psi_{2}+\cdots+\psi_{n+1}\right)=N\left(\psi_{0}+\psi_{1}+\psi_{2}+\cdots+\psi_{n}\right), \quad n=1,2, \cdots, \tag{11}
\end{equation*}
$$

and
$\sum_{k=0}^{\infty} \psi_{k}(x, t)=f(x, t)+N\left(\sum_{k=0}^{\infty} \psi_{k}(x, t)\right)$.

The n th-term approximation of the solution of (6) and (7) is then given by the truncated series $\sum_{k=0}^{n-1} \psi_{k}(x, t)$.
Now, if N is a contraction mapping in B, that is,
$\|N(x)-N(y)\| \leq k\|x-y\|, \quad 0<k<1$,
then

$$
\begin{aligned}
\left\|\psi_{n+1}\right\|= & \left\|N\left(\psi_{0}+\psi_{1}+\psi_{2}+\cdots+\psi_{n}\right)-N\left(\psi_{0}+\psi_{1}+\psi_{2}+\cdots+\psi_{n-1}\right)\right\| \\
& \leq k^{n+1}\left\|\psi_{0}\right\|, \quad n=0,1,2, \cdots .
\end{aligned}
$$

and the series $\sum_{k=0}^{\infty} \psi_{k}(x)$ converges absolutely and uniformly to a solution of (6) (Cherruault, 1989) and is unique owing to the Banach fixed point theorem (Jerri, 1999). The convergence of the DJM has been proved in Hemeda (2013) and Bhalekar and Daftardar-Gejji (2011).

DJM ALGORITHM FOR COUPLED SYSTEM OF TIME-FRACTIONAL PDES

Consider the following nonlinear coupled system of time-fractional PDEs

$$
\begin{align*}
& D_{t}^{\alpha} u_{1}=A_{1}(u, v, \partial u, \partial v)+B_{1}(x, t) \\
& D_{t}^{\alpha} u_{2}=A_{2}(u, v, \partial u, \partial v)+B_{2}(x, t) \tag{13}
\end{align*}
$$

with initial data
$\frac{\partial^{k}}{\partial t^{k}} u(x, 0)=h_{k}^{1}(x), \frac{\partial^{k}}{\partial t^{k}} v(x, 0)=h_{k}^{2}(x), \quad k=0,1,2, \cdots, m-1$,
where $\quad m-1<\alpha \leq m \in \mathbb{N}, A_{1}$ and A_{2} are nonlinear functions of u_{i} and their partial derivatives and B_{1} and B_{2} are inhomogeneous source terms. Taking appropriate fractional integral operator I_{t}^{α} from 0 to t on both sides of each equation in (13), it was easy to transform (14) to a system of nonlinear functional equations:

$$
\begin{align*}
& u_{1}(x, t)=f_{1}+N_{1}(u, v) \\
& u_{2}(x, t)=f_{2}+N_{2}(u, v) \tag{15}
\end{align*}
$$

Where

$$
\left\{\begin{array}{l}
f_{i}=\sum_{k=0}^{m-1} \frac{t^{k}}{\Gamma(k+1)} h_{k}^{i}(x)+I_{t}^{\alpha} B_{i}(x, t), \tag{16}\\
N_{i}(u, v)=I_{t}^{\alpha} A_{i}(u, v, \partial u, \partial v) .
\end{array}\right.
$$

For $i=1,2$, and (7)-(10) was obtained from the recursive relations

$$
\left\{\begin{array}{l}
u_{0}(x, t)=f_{1}(x, t), \\
v_{0}(x, t)=f_{2}(x, t), \\
u_{1}(x, t)=N_{1}(u(x, t), v(x, t)), \\
v_{1}(x, t)=N_{2}(u(x, t), v(x, t)), \\
u_{m+1}(x, t)=N_{1}\left(\sum_{k=0}^{m} u_{k}(x, t), \sum_{k=0}^{m} v_{k}(x, t)\right)-N_{1}\left(\sum_{k=0}^{m-1} u_{k}(x, t), \sum_{k=0}^{m-1} v_{k}(x, t)\right), \tag{17}\\
v_{m+1}(x, t)=N_{2}\left(\sum_{k=0}^{m-1} u_{k}(x, t), \sum_{k=0}^{m-1} v_{k}(x, t)\right)-N_{2}\left(\sum_{k=0}^{m-1} u_{k}(x, t), \sum_{k=0}^{m-1} v_{k}(x, t)\right), \\
m=1,2, \ldots,
\end{array}\right.
$$

from which the entire solution components of the IVP (13)-(14) computed.

Approximate solution of the TF-AKS model using the DJM

The DJM was used to obtain approximate analytic solution to the TF-AKS model (1)-(3). To this end, two cases were consider with respect to the chemotatic sensitivity function, namely, $\chi(v)=1$ and $\chi(v)=v$ subject to the initial conditions
$u(x, 0)=k_{1} e^{-x^{2}}, \quad v(x, 0)=k_{2} e^{-x^{2}}$.

Example 1

Assume that $\chi(v)=1$, then the TF-AKS model (1) reads

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=d_{1} \frac{\partial^{2} u(x, t)}{\partial x^{2}} \tag{19}\\
\frac{\partial v(x, t)}{\partial t}=d_{2} \frac{\partial^{2} v(x, t)}{\partial x^{2}}-\lambda v(x, t)+a u(x, t)
\end{array}\right.
$$

Operating both sides of each equation in (19) by I_{t}^{α} and keeping track of the initial conditions in (18), also obtained was the following
equivalent system of fractional integral equations
$u(x, t)=f_{1}+N_{1}(u, v), \quad v(x, t)=f_{2}+N_{2}(u, v)$
where $f_{1}=k_{1} e^{-x^{2}}, f_{2}=k_{2} e^{-x^{2}} \quad$ and the nonlinear terms $N_{1}(u, v), N_{2}(u, v)$ are defined as

$$
\left\{\begin{array}{l}
N_{1}(u, v)=I_{t}^{\alpha}\left[d_{1} \frac{\partial^{2} u(x, t)}{\partial x^{2}}\right] \tag{21}\\
N_{2}(u, v)=I_{t}^{\alpha}\left[d_{2} \frac{\partial^{2} v(x, t)}{\partial x^{2}}-\lambda v(x, t)+a u(x, t)\right]
\end{array}\right.
$$

Accordingly, the solutions for (19) is giving by the series

$$
\left\{\begin{array}{l}
u(x, t)=\sum_{k=0}^{\infty} u_{k}(x, t) \\
v(x, t)=\sum_{k=0}^{\infty} v_{k}(x, t)
\end{array}\right.
$$

Furthermore, by the same steps leading to the recurrence relation (17), the following iterates were obtained:

$$
\begin{aligned}
u_{0}(x, t):= & k_{1} e^{-x^{2}}, \\
v_{0}(x, t):= & k_{2} e^{-x^{2}}, \\
u_{1}(x, t):= & \frac{2 d_{1} k_{1}\left(2 x^{2}-1\right) e^{-x^{2}} t^{\alpha}}{\Gamma(\alpha+1)}, \\
v_{1}(x, t):= & \frac{\left(4 x^{2} d_{2} k_{2}+a k_{1}-\lambda k_{2}-2 d_{2} k_{2}\right) e^{-x^{2}} t^{\alpha}}{\Gamma(\alpha+1)}, \\
u_{2}(x, t):= & \frac{4 d_{1}^{2} k_{1}\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)}-\frac{2 d_{1} k_{1}\left(2 x^{2}-1\right) e^{-x^{2}} t^{\alpha}}{\Gamma(\alpha+1)} \\
v_{2}(x, t):= & \frac{\left(4 d_{2}^{2} k_{2}\left(4 x^{4}-12 x^{2}+3\right)+2\left(2 x^{2}-1\right)\left(a d_{1} k_{1}+a d_{2} k_{1}-2 \lambda d_{2} k_{2}\right)-\lambda\left(a k_{1}-\lambda k_{2}\right)\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)} \\
& -\frac{\left(4 x^{2} d_{2} k_{2}+a k_{1}-\lambda k_{2}-2 d_{2} k_{2}\right) e^{-x^{2}} t^{\alpha}}{\Gamma(\alpha+1)}, \\
u_{3}(x, t):= & \frac{8 d_{1}^{3} k_{1}\left(8 x^{6}-60 x^{4}+90 x^{2}-15\right) e^{-x^{2}} t^{3 \alpha}}{\Gamma(3 \alpha+1)}-\frac{8 d_{1}^{2} k_{1}\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)}, \\
v_{3}(x, t):= & \frac{8 d_{2}^{3} k_{2}\left(8 x^{6}-60 x^{4}+90 x^{2}-15\right) e^{-x^{2}} t^{3 \alpha}}{\Gamma(3 \alpha+1)}-\frac{2 \lambda\left(2 x^{2}-1\right)\left(a d_{1} k_{1}+2 a d_{2} k_{1}-3 \lambda d_{2} k_{2}\right) e^{-x^{2}} t^{3 \alpha}}{\Gamma(3 \alpha+1)} \\
& +\frac{4\left(4 x^{4}-12 x^{2}+3\right)\left(a d_{1}^{2} k_{1}+a d_{1} d_{2} k_{1}+a d_{2}^{2} k_{1}-3 \lambda d_{2}^{2} k_{2}\right) e^{-x^{2} t^{3 \alpha}}+\frac{\lambda^{2}\left(a k_{1}-\lambda k_{2}\right) e^{-x^{2}} t^{3 \alpha}}{\Gamma(3 \alpha+1)}}{\Gamma(3 \alpha+1)} \\
& -\frac{8 d_{2}^{2} k_{2}\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)}-\frac{2\left(4 x^{2}-2\right)\left(a d_{1} k_{1}+a d_{2} k_{1}-2 \lambda d_{2} k_{2}\right) e^{-x^{2} t^{2 \alpha}}}{\Gamma(2 \alpha+1)} \\
& +\frac{2 \lambda\left(a k_{1}-\lambda k_{2}\right) e^{-x^{2} t 2 \alpha}}{\Gamma(2 \alpha+1)} .
\end{aligned}
$$

For a better approximation, the study continues in a similar manner to obtain more solution components for $u_{m}(x, t)$ and $v_{m}(x, t)$ for

$$
\begin{align*}
u(x, t) & =u_{0}(x, t)+u_{1}(x, t)+u_{2}(x, t)+u_{3}(x, t)+\cdots \\
v(x, t) & =v_{0}(x, t)+v_{1}(x, t)+v_{2}(x, t)+v_{3}(x, t)+\cdots \tag{22}
\end{align*}
$$

Example 2

Assume that $\chi(v)=v$, then the TF-AKS model (1) reads

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=d_{1} \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial u(x, t)}{\partial x} \frac{\partial v(x, t)}{\partial x}-u(x, t) \frac{\partial^{2} v(x, t)}{\partial x^{2}}, \tag{23}\\
\frac{\partial v(x, t)}{\partial t}=d_{2} \frac{\partial^{2} v(x, t)}{\partial x^{2}}-\lambda v(x, t)+a u(x, t) .
\end{array}\right.
$$

Operating both sides of each equation in (23) by I_{t}^{α} and keeping track of the initial conditions in (18), the following equivalent system of fractional integral equations were obtained

$$
\left\{\begin{array}{l}
u(x, t)=f_{1}+N_{1}(u, v), \tag{24}\\
v(x, t)=f_{2}+N_{2}(u, v),
\end{array}\right.
$$

where $f_{1}=k_{1} e^{-x^{2}}, f_{2}=k_{2} e^{-x^{2}}$ and the nonlinear terms $N_{1}(u, v), N_{2}(u, v)$ are defined as

$$
\left\{\begin{array}{c}
N_{1}(u, v)=I_{t}^{\alpha}\left[d_{1} \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial u(x, t)}{\partial x} \frac{\partial v(x, t)}{\partial x}-u(x, t) \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right] \tag{25}\\
N_{2}(u, v)=I_{t}^{\alpha}\left[d_{2} \frac{\partial^{2} v(x, t)}{\partial x^{2}}-\lambda v(x, t)+a u(x, t)\right] .
\end{array}\right.
$$

Accordingly, the solutions for (23) is given by the series

$$
\left\{\begin{array}{l}
u(x, t)=\sum_{k=0}^{\infty} u_{k}(x, t) \\
v(x, t)=\sum_{k=0}^{\infty} v_{k}(x, t)
\end{array}\right.
$$

Furthermore, by the same steps leading to the recurrence relation (17), the following few iterates were obtained:

$$
\begin{aligned}
& u_{0}(x, t):=k_{1} e^{-x^{2}}, \\
& v_{0}(x, t):=k_{2} e^{-x^{2}} \text {, } \\
& u_{1}(x, t):=-\frac{2 e^{-x^{2}} k_{1}\left(4 k_{2} x^{2} e^{-x^{2}}-2 x^{2} d_{1}-k_{2} e^{-x^{2}}+d_{1}\right) t^{\alpha}}{\Gamma(\alpha+1)}, \\
& v_{1}(x, t):=\frac{e^{-x^{2}}\left(4 x^{2} d_{2} k_{2}+a k_{1}-\lambda k_{2}-2 d_{2} k_{2}\right) t^{\alpha}}{\Gamma(\alpha+1)}, \\
& u_{2}(x, t) \\
& :=\frac{1}{\Gamma(3 \alpha+1) \Gamma(\alpha+1)^{2}}\left(8 x ^ { 2 } e ^ { - 2 x ^ { 2 } } k _ { 1 } (8 k _ { 2 } x ^ { 2 } e ^ { - x ^ { 2 } } - 2 x ^ { 2 } d _ { 1 } - 6 k _ { 2 } e ^ { - x ^ { 2 } } + 3 d _ { 1 }) \left(4 x^{2} d_{2} k_{2}+a k_{1}\right.\right. \\
& \left.\left.-\lambda k_{2}-6 d_{2} k_{2}\right) \Gamma(2 \alpha+1) t^{3 \alpha}\right) \\
& +\frac{1}{\Gamma(3 \alpha+1) \Gamma(\alpha+1)^{2}}\left(4 e ^ { - 2 x ^ { 2 } } k _ { 1 } (4 k _ { 2 } x ^ { 2 } e ^ { - x ^ { 2 } } - 2 x ^ { 2 } d _ { 1 } - k _ { 2 } e ^ { - x ^ { 2 } } + d _ { 1 }) \left(8 x^{4} d_{2} k_{2}+2 a x^{2} k_{1}\right.\right. \\
& \left.\left.-2 \lambda x^{2} k_{2}-24 x^{2} d_{2} k_{2}-a k_{1}+\lambda k_{2}+6 d_{2} k_{2}\right) \Gamma(2 \alpha+1) t^{3 \alpha}\right) \\
& +\frac{2 e^{-x^{2}} k_{1}\left(4 k_{2} x^{2} e^{-x^{2}}-2 x^{2} d_{1}-k_{2} e^{-x^{2}}+d_{1}\right)\left(-2 k_{2} e^{-x^{2}}+4 k_{2} x^{2} e^{-x^{2}}\right) t^{2 \alpha}}{\Gamma(2 \alpha+1)} \\
& -\frac{4 d_{1} e^{-x^{2}} k_{1}\left(32 k_{2} x^{4} e^{-x^{2}}-4 x^{4} d_{1}-48 k_{2} x^{2} e^{-x^{2}}+12 x^{2} d_{1}+6 k_{2} e^{-x^{2}}-3 d_{1}\right) t^{2 \alpha}}{\Gamma(2 \alpha+1)} \\
& +\frac{2 e^{-x^{2}} k_{1}\left(4 k_{2} x^{2} e^{-x^{2}}-2 x^{2} d_{1}-k_{2} e^{-x^{2}}+d_{1}\right) t^{\alpha}}{\Gamma(\alpha+1)} \\
& +\frac{8 x^{2} e^{-2 x^{2}} k_{1}\left(8 k_{2} x^{2} e^{-x^{2}}-2 x^{2} d_{1}-6 k_{2} e^{-x^{2}}+3 d_{1}\right) k_{2} t^{2 \alpha}}{\Gamma(2 \alpha+1)}, \\
& v_{2}(x, t):=\frac{4 d_{2}^{2} k_{2}\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)}-\frac{2\left(e^{-x^{2}}\right)^{2} a k_{1} k_{2}(2 x-1)(2 x+1) t^{2 \alpha}}{\Gamma(2 \alpha+1)} \\
& +\frac{2\left(2 x^{2}-1\right)\left(a d_{1} k_{1}+a d_{2} k_{1}-2 \lambda d_{2} k_{2}\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)}-\frac{\lambda\left(a k_{1}-\lambda k_{2}\right) e^{-x^{2}} t^{2 \alpha}}{\Gamma(2 \alpha+1)} \\
& -\frac{e^{-x^{2}}\left(4 x^{2} d_{2} k_{2}+a k_{1}-\lambda k_{2}-2 d_{2} k_{2}\right) t^{\alpha}}{\Gamma(\alpha+1)},
\end{aligned}
$$

For a better approximation, the study continues with the same iterative steps to obtain more solution components for $u_{m}(x, t)$ and $v_{m}(x, t)$ for $m \geq 3$. Finally the most approximate solution of the system is given as:
$u(x, t)=u_{0}(x, t)+u_{1}(x, t)+u_{2}(x, t)+\cdots$ $v(x, t)=v_{0}(x, t)+v_{1}(x, t)+v_{2}(x, t)+\cdots$ (26)

Numerical discussions

Discussions of the numerical results obtained for the TF-AKS models were provided in Example 1 and Example 2 above. The numerical simulations via graphical representations are given in 2D and 3D for the approximate solutions for distinct values of α and for the following set of theoretical parameters:

$$
d_{1}=0.5, \quad d_{2}=3, \quad k_{1}=120, \quad k_{2}=160, \quad a=1, \quad \lambda=2, \quad \chi=1 .
$$

Figures 1(a)-(d) shows the surface graphs for the chemotatic cell density and chamoattractant concentration in Example 1 different values of α while Figures 2(a)-(d) shows the surface graphs for the chemotatic cell density and

chamoattractant concentration in Example 2 for different values of α. For the different values of α, the graphs show close similarities, indicating continuous dependence on the fractional parameter α.

Figure 1. (a)-(d): 3D surface graphs representations for the approximate solution (22): (a) $u(x, t)$ at $\alpha=1(b) u(x, t)$ at $\alpha=0.85(c)$ $v(x, t)$ at $\alpha=1(d) v(x, t)$ at $\alpha=0.85$.

Figure 2. (a)-(d): 3D surface graphs representations for the approximate solution (26): (a) $u(x, t)$ at $\alpha=1(b) u(x, t)$ at $\alpha=0.85(c)$ $v(x, t)$ at $\alpha=1(d) v(x, t)$ at $\alpha=0.85$.

Conclusions

The mathematical model for the onedimensional time-fractional attraction KellerSegel (TF-AKS) model with different chemotactic sensitivity functions were investigated in this paper, using the DJM. The proposed method works very well for both linear and nonlinear systems of differential equations with either integer order or fractional order differential operators. One very important advantage of the technique used is that it does not require discretization of variables, perturbation or any form of restrictive assumptions. It is straightforward, very easy to implement and computationally attractive than many other methods. It is also a very efficient analytical method which provides a simple iterative algorithm that could be extended to a wide class of models described by coupled systems of linear and nonlinear time-fractional partial differential equations arising in mathematical biology and other areas of science.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENTS

The author is grateful to the anonymous reviewers for their comments and suggestions which greatly improved this work.

REFERENCES

Atangana, A., Alabaraoye, E. (2013). Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor onedimensional Keller-Segel equations. Advances Difference Equations 94: 1-14.
Arikoglu, I. Ozkol. (2007). solution of fractional differential equations by using differential transform method. Chaos, Solitons and Fractals. 34; 1473-1481.
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J. (2012). Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos: Volume 3, World Scientific, Boston, Mass, USA.
Bhaleker, J., Daftardar-Gejji, V., (2008). Convergence of the new iteration method.

International Journal of Differential Equations, 2011 DOI:10.1155/2011/989065
Daftardar-Gejji, V., Jafari, H. (2006). An iterative method for solving nonlinear functional equations, Journal of Mathematical Analysis and Applications. 316; 753-763.
Dhaigude, D. B., Birajdar, G. A., Nikam, V.R. (2012). Adomain decomposition method for fractional Benjamin-Bona-Mahony-Burgers equation. Int. J. Appl. Math. Mech. 8; 42-51.
Dehghan, M., Manafian J., Saadatmandi, A. (2010). Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differential Equations. 26; 448-479.
Hashim, I., Abdulaziz O., Momani, S. (2009). Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation. 14; 674-684.
Hemeda, A.A. (2012). Homotopy perturbation method for solving systems of nonlinear coupled equations, Applied Mathematical Sciences, 6; 4787-4800.
Hillen T., Painter, K. J. (2009). A users guide to PDE models for chemotaxis, J. Math. Biol. 58; 183-217.
Horstmann, D. (2003). From 1970 until present: The Keller-Segel model, In: chemotaxis and its consequences I, Jahresber. Deutsch. Math. -Verien. 105; 103-165
Jerri, A. J. (1999). Introduction to integral equations with applications 2 nd ed. Wiley-Interscience, New York.
Keller, E. F. Segel,L.A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Bio. 26; 399-415.
Miller, K. S. Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.
Momani, S., Odibat, Z. (2007). Homotopy perturbation method for nonlinear partial differential equations of
fractional order. Physics Letters A 365: 345-350
Odibat, Z. Momani, S. Erturk, V. S. Generalized differential transform method: application to diferential equations of fractional order. Appl. Math. Comput, 197; 467-477.
Oldham K.B., Spanier, J. (1974).The Fractional Calculus. Academic Press, New York and London
Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego.
Samko, S. G. Kilbas, A. A. Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon.
Sunil, K., Amit, K., Ioannis, K.A.A. (2017). new analysis for the Keller-Segel model of fractional order, Numerical Algorithms, 75; 213-228.

