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Many real life problems involving management decision or policy making over limited available 

resources are usually formulated as optimization problems. This work focuses on two major techniques 

of obtaining solutions in global optimization: Outer Approximation Method (OAM) and Interior Point 

Method (IPM). Special consideration is made on constraint dropping strategy over a polyhedral set 

which is a technique of OAM and compares it with interior point method. Computational steps show 

that IPM performs very well due to its gradient-based property but the same optimal solution. The 

OAM technique discussed allows nonlinear cuts and unbounded feasible sets. 
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INTRODUCTION 

This current work considers two special 

techniques of handling a bounded feasible set 

known as Polyhedral sets. There are several 

methods for global optimization such as the 

Branch and Bound methods, Neighbour 

generation method; the Fixed Point method, 

Interior Point Method(IPM), different gradient 

techniques, especially the approximate gradient 

method and of course, the OAM.. The OAM of 

feasible set involves a sequence of relaxed sets 

which could be broken down into simpler 

subsets or the inner approximation, which is 

also an aspect of the OAM. Series of works 

have been done in this field. Hence, this 

present work brings together some of these 

different approaches of OAM and IPM. IPM 

came about as need to improve the existing 

solution technique.     

Since the pioneering works of Cheney and 

Goldstein (1959) and then Golmory (1957) on 

the algorithm for Integer Programming 

solutions, many researchers have proposed a 

number of working algorithms. Horst and 

Thoai (1984), Benson (1996), Horst et al. 

(1989a and 1989b) were on the front burner to 

promote OAM by Polyhedral convex set. 

However, Karmarkar (1984a)’s interior point 

generation LP problems came on board. His 

contributions also showed that the optimal 

solutions so obtained were global. Rosen (1988) 

focused more on global minimization for concave 

functions. With continuous improvement, OAM 

has developed into a basic tool in combinatorial 

optimization. Horst et al. (1989a, b) presented a 

large variety of methods. IPMs as proposed in 

Karmarkar (1984a, b) have also been highlighted 

in this work. It is a method that works in opposite 

direction with OAM but arrives at the same 

destination. Some of these optimization problems 

can be handled through the duality approach. A 

variant OAM developed by Benson(1996) has 

been considered. The cutting plane method laid 

the foundation and then improvement in recent 

algorithms which are more efficient. Kelly 

(1960), Topkis (1970) and Veinott (1997) have 

all contributed in different dimensions as early 

arrivals. Recent contributions are now channeled 

towards bilevel Mixed integer programming 

problems (Kleinert and Schmidt, 2019; Lozano 

and Smith, 2017). Fletcher and Leyffer(1994) 

administered OAM in solving mixed integer 

nonlinear programs. Several numerical 

illustrations have been given in Ehrgott et al. 

(2007). 

In the angle of IPM, Arbel (1993, 1994) and  
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Arbel and Oren (1996) purported that obtaining 

the interior multi-objective LP is better through 

approximate gradient method. An LP model 

formulated as an OAM having combinatorial 

lower bound problem in terms of machine 

problems has been studied by Goemans et al. 

(2002) and Dyer and Wolsey (1990) with a 

comparison. This comparison corresponds to a 

technique of assignment problem where 

variables show which activity is being 

processed. Another relaxation method was 

proposed by Fukushima (1983) with an 

algorithm that solves each stage of the 

constraint problems independent of the 

solution from the previous stage. Plaxco et al. 

(2014) also contributed by  using polynomial 

time completion and it minimized the mean 

busy time of preemptive time indexed 

formulation in Goemans et al.(2002). However, 

Cornuejols (2008) explained how to recognize 

valid inequalities that would be used to 

generate interior of multi-objective linear 

program. It surveys the method of developing a 

framework for dual mixed integer linear 

program.  

In many applications, the ideas portrayed are 

to solve the resulting optimization problem and 

show that the results obtained are globally 

optimal for the problems arising from the 

model formulations. Next, the workings of the 

two techniques are presented. 

Let us consider the optimization problem 

below 

 

                                                       (1) 

                
D is a compact set of n-tupple decision 

elements 

 

Outer approximation method 

The general technique of OAM is obtained by 

reformulating (1) as a minimization of a 

sequence of simpler relaxed sub-functions 

contained in the compact set, D. that is, 

 

 

            (2) 

 

Such that                  

Also,                   . Moreover, the 

sets of    belong to   , where    is a family of 

closed convex sets with the following 

characteristics: 

 

(i) The sets, of:      are closed  for all k and 

any problem (2) having   .r has a solution  

can be solved by  algorithms available. 

(ii) For any      contained in D and any point 

     , without D,  can be determined  by 

defining the special constraint function 

(i    
   such that 

 

      
                                                                           (3) 

 

The properties                        

denote that  

               is dense and strictly 

separate         from D. The process of 

breaking down the  original constraint into sub-

problems in form of additional constraints is 

known as constraint dropping strategy over a 

polyhedral function. The constraint dropping idea 

comes from the behavior of the additional 

constraint          which cuts off a subset of 

  . Recall also that       , meaning that no 

part of D  is cut-off. Each   consists of outer 

approximation of D. 

Consequently, since             , we 

have that: 

 

                            and 

                                           (4) 

 

Given the initial set   containing the feasible 

region D, a successive sets of            are 

constructed iteratively in a way that     
    and        . If       then    is a 

global solution. We now present results on the 

principles of Outer approximation method. The 

result is due to Horst and Tuy (1993). 

 

 

THEOREM 1 

That (i) the sequence    is a lower semi-

continuous for each j=1,2,3,… 

(ii) each convergent subsequence        
   

satisfying           contains a subsequence  

         

    
 

       

                                                   ,  = 1,2,  ,     

(ii) For any      contained in D and any point      , without D,  can be determined  by 

defining the special constraint function (i  :     such that 

                                0,      

      > 0, {    :   ( )  0}                    (3) 

The properties       0,             > 0 denote that  

{    :   ( )  0} is dense and strictly separate      /  from D. The  
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          such that              

          ̅  and           ̅     ̅   . 

Then every limit point of the sequence        

is in D and also solves (3) 

Proof: see Cheney and Goldstein(1959) 

 

 
SOLUTION OF THE NEW VERTICES 

Let the current set of inequalities be relaxed as 

in (3) 

                           
                

k is finite set of indices and          the 

new constraint defining the extended domain 

 

                          
                                      (4) 

 

If 

                                               
respectively with the extreme directional as 

            . 

Then standardizing ,  we reformulate additional 

constraints as 

 
                             (5) 

 
And define    and    as below 

 
  

                   
  

                          (6a) 

 
  

                   
  

                        (6b)  

 
Converting the inequalities in 6a and b to 

equations by equating both the positive and 

negative sides to zero, a solution of 

                         . Similarly, a 

solution of                       The set of 

equations are solved using LP technique. The 

vertices obtained are points in the Polytope    

and intersect with unbounded edge of       The 

extreme directions are also determined and the 

redundant constraints are eliminated in such a 

way that their removal does not affect or 

change the solutions obtained. There are 

several variants of  OAM.  Consider the 

following  solution steps.  

METHODOLOGY 

This method works perfectly for linear 

programming problem(LPP). It is also suitable  

for general continuous optimization and  

applicable to nonlinear programs. Like  the 

bundle method that is popularly used for non 

differentiable convex minimization, the results 

are  the same as OAM. 

Let us consider Equation 2 with slight 

modification as: 

 

 
 

Let the feasible region of (II) of BB be denoted as 

D’,   is an     matrix and     . 

Let            be vertices of n-simplex,     . 

Let also     
    be a convex envelope of 

      , then the following conditions hold;   

 

(i)  ̇            ̇  ∑  ̇  
    

           ̇  

∑ (  ) ̇  
 
    

(ii) if  ̇     is an extreme point of    then 

 ̇  ∑  ̇  
  

    is an extreme point of D. 

(iii) that the optimal solutions of the two models 

in BB are equal or unique. That is, if   is an 

optimal solution to (I) of BB then       is an 

optimal solution to II of BB. 

We can show that the above conditions are true 

by  

(1) Assume that  ̇    and  ̇  ∑  ̇  
    

   . 

Since 

 

∑        
 
     , then    ̇    such that  ̇   .

                                                                (7) 

 

 This implies that    in BB is an affine function 

and also satisfies   ( 
 )       , j=1,2,…,n. 

Hence 

 

,    ̇  
   ∑  ̇  

   
   =∑  ̇ 

 
       

  =∑  ̇       
   .

                               (8) 

 

(2) Suppose  ̇ is not an extreme point of D,  

Let us consider Equation 2 with slight modification as: 

 

        , subject to    ..(I) 

and    ∑  (  )  , 
 =1  

subject to ∑ (   )  
 
 =1   ...(II) 

  ∑   
 
 =1 = 1.  

 

BB 
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given        ̇  distinct from  ̇ and some 

scalars 

  

         ̇                        (9) 

 

In the same way for        ̇ we have that 

   ∑               
    then  

 

 ̇  
 ∑   

        
   

  ∑   
    

   =∑     
         

        
   

                                  (10) 

 

By the uniqueness of     there exists no  ̅     
also no   ̅   ̇ exists. 

Hence,   

 ̇               ̇        

implying that  ̇ is an extreme point of   . 
(3)To show that condition (iii) above hold, we 

assume that    is an optimal solution to 

problem (I) of BB.     is a unique element 

of D’ satisfying    ∑   
    

   . Moreover, if  

 ̅  ∑  ̅   
      then    is an optimal 

solution to problem I of BB. Thus,      
   

    ̅  

This is possible by initiating the following 

steps 

 

a) Choose an initial n-simplex vi , containing D 

(   ) 

b) Create a partition of the initial n-simplex to 

obtain n sub- division of n-simplex. Each 

partition comprises  n-sub-simplex with lower 

bound(LB). 

c) Minimize LB over the interval generated 

from the previous iteration. This is used in the 

current iteration. 
 

 

INTERIOR POINT METHODS 

This technique is especially useful in solving 

primal-dual linear programming problem 

especially of the multi-objective type. With this 

approach, a single objective problem is 

reformulated into multi-objective form by 

deriving the gradient of the utility function. 

Projecting the approximate gradient generates 

the interior steps. Following the interior step 

from current iteration to a new projection, a 

number of variants have been introduced by  

Arbel (1993, 1994). The Karush-Kuhn Tucker 

(KKT), the dual problem and the log barrier 

function are some of the options of IPM. Let the 

primal programming problem be given as: 
  

       
   

                                               (11) 

 

Standardizing and then obtaining the dual yields 

       
   

                                    
                                                   (12) 

 

Instead of using the simplex iterative method, the 

derivative is obtained following the step 

direction. 

 

       
    ( ̅ )    

                                 

                                                                         (13) 

 

where 

          
           

      ̅                (14) 

 

                                                (15) 

 

   ̅   ̅             
   ̅                  (16) 

 

 ̅                                                         (17) 
 

And finally,  

 

    ∑      
 
         and       ∑             

   

                                                                        (18) 
 

  denotes the additional variables resulting from 

either slack, surplus or artificial variables for each 

of the constraint  equation. The     acts like the 

directional derivative for the i constraint. From 

Equations 10 to 18, D and    are the diagonal 

    matrix representing the components of 

current iterates of    and   . Once the directional 

derivative is obtained, the interior step direction 

follows. This is synonymous to the approximate 

gradient. Consider the model in (11),  

if                     ̇     f is differentiable. 
 

    ̇      ̇                                     (19) 

 

Equation 19 is called a variational inequality and 

monotone if 



 

278 

Nigerian Journal of Science and Environment, Vol.18 (1) (2020) 
 

       ,                     
                                               (20) 

 

Another approach is to obtain the logarithmic 

barrier function associated with Equation 11 

as: 
 

             ∑     
     

                                                                      

(21) 
 

  is a positive scalar known as the barrier 

parameter. The advantage is that it guarantees 

convergence of solution as    , (21) tends to 

a solution of Equation 11. 
 

 

ILLUSTRATIONS 

Solve the multi-objective problem with three 

objectives. Below are the cost matrices of the 3 

objectives: 
  

 
 

Solution Example 1 

For OAM  the non-dominated vertices from the 

cost matrices are (11,11,14), (19,14,10), 

(15,9,17 ) and (13,16,11). These correspond to 

the facets of the domain D by 
 

 
 

for the 4  facets respectively. D has 9 vertices 

(Table 1). 
 

 

Example 2 

 

 

Table 1. The vertices and the corresponding facets with 
values obtained. 
 

Vertices of D                                                Facets 

                  

1      0        11                                                          = 11 

0      1         9                                            = 9 

0      0        10                                          = 10 

 

 
       

 

 
        11    

 

 
   +   

 

 
                      = 11 

 

 
      0       12½  

 

 
    +                       

 

 
  =   

 

 
 

0      
      

 
    

 

 
                 

 

 
  +            

 

 
   =   

 

 
 

 

 
     0       11

 

 
   

 

 
     +                      

 

 
   =  11

 

 
 

0     
 

 
        12                     

 

 

 

 
    +      

 

 
   =   

 

 
 

  

  
  
  

  
    

  

  
    

  

  
    +  

  

  
  +       

  

  
   =   

  

  
 

 

 
Method 2 of OAM to obtain the solution of 

        [   ]    The optimal solution has upper 

bound a    . 

 

 

Example 3 

 

 
 

Solution: feasible point IPM:           
       
 

 
The Hessian is positive definite,  

 

 
 

The matrix        is known as Schur 

complement of  .  

 

3 6 4  5
2 3 5  4
3 5 4  2
4 5 3  6

    ,   

2 3 5 4
5 3 4 3
5 2 6 4
4 5 2 5

  ,   

4 2 4 2
4 2 4 6
4 2 6 3
2 4 5 3

  

3 1  +   3 2+ 3  = 14 

  9 1      2  +  3  = 10  

 2 1  +   8 2  +    3 = 17  

 2 1   5 2  +    3 = 11 

 

      
 =1,2

=  1
2 +  2

2 + 2 

            ( 1   2)2   2  0 

   1  0  

 1   2  3  0  

 1  1  0 

 2  1  0 

 1   2  0 

0   1  4, 0   2  4 

      𝑧      =       

 

 =1
 0              =   

     =

 
 
 
 
 1

 1

 1

   
 
 
 

,  =          
1

 1
2 ,  ,

1

  
2  

    𝑇

 0
  

 
 
 =  

  
0

 ,                    +  𝑇 =       

      1  +  𝑇  .  𝑇               = 0,     1  +  𝑇  = 0 

    1 𝑇               .       ,  =     1 𝑇) 1   1 ,

  1 =           1
2 ,    

2  
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Explanation 

In Example 1, the dual simplex was used to 

solve the reformulated linear cuts in OAM 

while the constraints system was decomposed 

from the primal into its dual following the 

steps of  IPM to obtain solution. The results 

obtained showed the same optimal solution. 

The number of constraints in the optimal table 

was 16 in 16 unknown, with 4 vertices, 3 

facets. It was observed that the dual is faster if 

the decomposed constraints have fewer facets. 

Examples 2 and 3 were solved using OAM and 

IPM respectively. 

 

 

Conclusion 

The OAM came into existence to overcome the 

problems of extreme point ranking through the 

additional constraints (affine cuts) introduced 

which also guarantee convergence. The cutting 

plane method was the first algorithm developed 

for Integer programming and later modified to 

obtain the Branch and Bound method. Thus, it 

gave an insight for more efficient algorithms. 

OAM is an improvement of these techniques. 

The advantage attached to OAM is that the 

steps involved are finite; the solution is exact 

and globally optimal. The IPM also guarantees 

convergence and is affine invariance. For the 

OAM, as the number of linear constraints 

increases at each stage of the iteration, 

computational effort increases. By proceeding 

with the solution, redundant constraints are 

dropped while a finite number of the relevant 

cuts are retained. Apart from this, at each stage 

again, the localized sets are replaced with 

bounded set as an additional constraint. If the 

function f in Equations 11 or 19 is nonlinear, 

then the localized sets are no longer 

Polyhedral. The common factor is that the two 

techniques can be utilized to solve both linear 

and nonlinear programming. On the other 

hand, the IPM is not too efficient especially for 

large convex problem.  
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